
Extending The Linux Operating System For Grid 
Computing 

 
Nur Hussein  

Postgraduate Lab,  
School of Computer Science,  

Universiti Sains Malaysia,  
11800 Pulau Pinang, Malaysia.  

hussein@cs.usm.my 
 

 
 

Constantine Kolivas  
Australian & New Zealand 
College of Anaesthetists,  

630 St Kilda Road, Melbourne 
Vic 3004, Australia.  

kernel@kolivas.org  
            
 

    

Fazilah Haron,  
Chan Huah Yong  
Grid Computing Lab,  

School of Computer Science,  
Universiti Sains Malaysia,  

11800 Pulau Pinang, Malaysia.  
fazilah@cs.usm.my  
hychan@cs.usm.my

ABSTRACT 
The emergence of metacomputing and grid technologies as a new 
trend in high performance computing has opened up many 
interesting problems in the implementation of resource-sharing 
and efficient scheduling of compute-intensive processes. While 
much work has been done to build grid services on top of existing 
infrastructure, little has been done to make the underlying 
operating system aware of these new applications. If extensions 
for facilitating grid computing could be built into the operating 
system kernel, it would simplify the job of grid service 
implementers in userspace for they could rely on the transparent 
services of the kernel for tasks such as process checkpointing and 
resource discovery. This paper discusses the implementation of 
grid-friendly extensions to the Linux operating system; process 
checkpointing, userspace filesystems and a fair-scheduling 
algorithm optimized for compute-intensive applications. The fair -
scheduling algorithm is benchmarked and compared to existing 
Linux schedulers, and the preliminary results show an increase in 
system throughput with the modified scheduling algorithm.  
 
Categories and Subject Descriptors 
C.2.4 [Computer-Communications Networks]: Distributed 
Systems - Network operating systems; D.4.8 [Operating 
Systems]: Performance – measurements, operational analysis 
 
General Terms 
Algorithms, Measurement, Performance, Design, 
Experimentation. 

 
Keywords 
Linux, grid computing, checkpointing, distributed file systems, 
fair scheduling. 

 
 
 
 
 
 
 
 

1. INTRODUCTION 
 
Grid computing [1] is an emerging new paradigm of distributed 
computing which allows the sharing and aggregation of 
distributed resources in a unified manner. There are numerous 
software projects such as Globus [2] and Condor [5] which help 
enable this resource-sharing in an organized and systematic way. 
However, the underlying operating systems that are used to 
implement grid computing are usually unaware of this resource 
sharing. Therefore, if the operating system were built with certain 
extensions to take into account this distributed nature of resource 
sharing, it would make implementation of certain grid services 
simpler and more transparent. We have added several 
modifications to the Linux operating system kernel to complement 
the implementation of higher-level grid services in userspace.  
 
Linux was chosen as the platform of choice due to its emerging 
popularity as a scientific and grid computing platform. The 
modifications added are the aggregation of several Linux kernel 
projects that was integrated into a customized Linux kernel which 
provides the following: 
 

• Process checkpointing 
 
• Extends the VFS [4] interface for customized 

filesystems implementable in userspace 
 
• Enables fair scheduling in the Linux kernel  
 

These modifications help userspace grid programs execute in a 
more flexible environment. This paper will elaborate on each of 
these different modifications and the rationale behind the 
inclusion of each.  
 
1.1 Process Checkpointing 
 
Grid computing usually involves the execution of long-running 
computational processes. Applications such as molecular 
modeling, DNA and protein analysis, mathematical algorithms 
and other scientific applications which are the target usage of grid 
technologies usually run for hours or days, even on modern 
hardware. Therefore, it would be advantageous if the execution 
state of these applications could be captured and saved to disk, 
either for backup purposes (so that work won’t be lost if there is 

 
Copyright is held by the author/owner(s) 
 
Asia Pacific Advanced Network/QUESTnet 2004, 2-7 July 
2004, Cairns, Australia. 
Network Research Workshop 2004, 2-7 July 2004, Cairns, 
Australia. 
 
 



node failure) or for process migration (process state can be 
transferred to another machine and restarted there).  
 
Some operating systems provide a mechanism for process 
checkpointing that enables applications to be suspended and 
restored. However, this functionality is still missing in the official 
Linux kernel. Checkpointing in our custom Linux kernel is 
achieved through the addition of the EPCKPT checkpoint code, 
which is work initially done by Pinheiro [8]. With this additional 
code, it is possible to implement resource schedulers that have the 
freedom to transparently checkpoint, and if required, migrate 
processes in the distributed system. Since this mechanism is 
implemented in kernelspace, checkpoint and restart of the 
processes can be done almost completely transparently.  
 
1.2 Userspace Filesystem Extensions  
 
One of the philosophies of the Unix operating system is that 
“everything is a file”.  It was this concept that was carried over 
into the design of the Plan 9 Operating System from Bell Labs [7], 
where distributed resources are also represented in the filesystem. 
This concept was the inspiration for adding Malita’s Linux 
Userspace Filesystem (LUFS) [6] into the custom kernel. LUFS 
augments VFS with a generic filesystem interface that “exports” 
POSIX system calls such open and read into userspace. Therefore, 
it is possible to implement VFS functions in userspace, allowing 
grid service implementers to transparently handle filesystem calls 
for distributed processes without having to resort to using a global 
filesystem for every single participating computing node. It also 
allows complex filesystem-based modules to be added to the 
operating system without the overhead of bloating the kernel 
proper, since the code will run in userspace.  
 
One such module is the distributed /proc interface, which allows 
the representation of remote resources inside the hierarchy of the 
filesystem. Traditionally, the /proc interface contains information 
on memory, processor availability and other system information. 
The distributed /proc interface contains information about remote 
computing nodes and the information about each resource in the 
remote nodes. Like Plan 9, this information is not polled, but 
generated (queried from the remote nodes) when the 
representative distributed /proc entry is queried by any process. 
Therefore, this simplifies the implementation of a resource 
scheduler for the distributed system, as it does not need to use any 
special API for resource discovery as normal POSIX system calls 
can be used. In Figure 1, there are n nodes visible to a particular 
node. Besides the local /proc filesystem, the remote nodes’ /proc 
filesystems are also accessible to the local node because they are 
mounted via userspace filesystem modules. Any process can 
transparently access (query) the remote /proc filesystems as if 
they were on the local node. A userspace filesystem will handle 
all accesses to these special files, and send network queries to the 
remote nodes.  

 
Figure 1 : VFS hierarchy showing mounted remote /proc 

filesystems  

1.3 Fair Scheduling In Linux  
 
The official Linux kernel was designed to be as generic as 
possible, to support all kinds of architectures from high-end 
mainframes to handheld computers. It has to perform well on 
servers and desktops so the process scheduler tries to adapt to the 
different workloads that it might encounter. Desktop users in 
particular want a graphical user interface that is responsive and 
smooth. To achieve this, the scheduler has to unfairly favor the 
processes that are interactive, such as processes that use or 
manage the GUI. However, in certain computational 
environments such as a compute-server farm, it is not necessary to 
perform such scheduler optimizations on interactive processes, as 
most servers are not used as desktops. Therefore, for the purpose 
of compute-intensive servers, Kolivas [3] devised a simpler fair-
scheduling algorithm. This work is based on Molnar's O(1) 
scheduler which is more scalable than the default 2.4 kernel 
scheduler and is now part of the new 2.6 kernel. This algorithm 
works as follows:  
 
1. There are two queues of processes, one for active processes 

and another for expired processes. Each queue is effectively 
sorted by priority.  

 
2. Every process of the same priority X is given N units of 

timeslice  
 
3. If a process has priority Y and Y > X then it is given M units 

of timeslice where M > N  
 
4. Unless preempted by another process of a higher priority (if 

one wakes up), a process will run until it's timeslice expires 
or it goes to sleep voluntarily 

 
5. When a process's timeslice expires, it is removed from the 

active queue and inserted into the expired queue. Once the 
active queue becomes empty, the expired queue becomes the 
active queue and the active queue becomes the expired 
queue.  

 
In the official Linux 2.4 and 2.6 kernels, the priority value of the 
default scheduler is a function of its “nice” value and its sleep 
behavior. This priority value, called the dynamic priority of a 
process is the effective priority given to tasks after an interactivity 
estimation algorithm takes into account how much the process 
needs to respond to user input/output. With the fair-scheduling 
algorithm, we allow processes of the same "nice" level to not ever 
have dynamic priorities higher than processes with an equal 
“nice” value.  
 
Therefore, unlike the default scheduler, there is never preemption 
by tasks of equal “nice” value. Hence, if all processes run at the 
same “nice” level they will always run using up a full timeslice. 
When preemption does occur because of a higher priority task, it 
is delayed for a short time so that even lower priority tasks get to 
run for some time bound to the CPU before being expired. This 
effectively increases the throughput of the operating system, 
because the longer a task is bound to the CPU the more it benefits 
from the CPU's cache. Also, the default timeslices for this 
modified scheduler have been increased (see Table 1). We will 
compare the results of a throughput test between kernels in 
Section 2, where we see a notable increase in both throughput and 
scalability of the modified Linux kernel.  
 



In a grid computing environment, it is desirable for the fair 
scheduling of processes, for the benefit of  the added throughput, 
and also to ensure that the priorities assigned to the processes by 
the user have maximum effect on the way the computer schedules 
them. This is because a distributed system such as the grid will 
have many different users, with different levels of authority. 
Enforcing the priority levels as fairly as possible ensures users of 
different priorities get their appropriate percentage of CPU time.  
 

Table 1 : Scheduler timeslices comparison between default 
kernel 2.4.22 and modified kernel 2.4.22 

 
Nice Value Default Linux 

2.4.22 timeslices 
(milliseconds) 

Modified Linux 
2.4.22 timeslices 
(milliseconds) 

-20 110 300 
0 60 150 
20 10 10 

 
2. PERFORMANCE EVALUATION OF THE 
MODIFIED KERNEL  
 
We have carried out several tests of the modified Linux kernel to 
compare its performance against the default kernel. In particular, 
we wanted to see the effect of the fair scheduling policy on the 
overall throughput and scalability of the kernel. The tests were 
carried out with the help of Open Source Development Lab's STP 
program. The tests were run on an 8-way 700 Mhz Pentium III 
Xeon with 1024K of Level 2 cache on each of the eight 
processors. The total system RAM for the machine is 8 GB, and 
the 40 hard disks run on SCSI-RAID controllers. The test suite 
run was Reaim [9], which is a modernized version of AIM 
technologies AIM 7 and AIM 9 benchmarks. It runs an increasing 
number of processes that do a number of tas ks to completion, and 
measures the time taken. Three kernels versions were tested; the 
standard Linux 2.4.22, the standard Linux 2.6.0-test9 and the 
modified kernel 2.4.22 that contains the fair scheduler. The graphs 
below show the number of jobs completed per minute against the 
number of processes that were created to run on the system. 
 
 
 

 
 

Figure 2 : Reaim results for Linux kernel 2.4.22 
 

 
 

Figure 3 : Reaim results for Linux kernel 2.6.0-test9 
 
 

 
 

Figure 4 : Reaim results modified Linux kernel 2.4.22 with 
fair scheduler. 

 
As can be seen from the results, the fair scheduler can handle a 
peak of approximately 9000 jobs a minute, compared to 6500 jobs 
a minute and 7000 jobs a minute for the default schedulers in 
kernel 2.4.22 and the new kernel 2.6.0-test9. This is an increase in 
throughput of approximately 40% compared to the default 
scheduler in an equivalent Linux 2.4.22 kernel. This is the effect 
of processes being able to take advantage of the CPU cache each 
time it is scheduled, since each process gets more CPU time to do 
work compared to the default kernel.  
 
3. CONCLUSION AND FUTURE WORK 
 
In this paper we have described the addition of kernel components 
that make the operating system a more flexible, transparent and 
feature-rich environment for the development of grid services. 
The addition of kernel checkpointing, customizable userspace 
filesystems and more computational-centric scheduling have 
provided the groundwork for more complex mechanisms to built 
on top of it. A process migration facility can be built on top of this 
foundation, and a custom userspace filesystem module is required 
to handle distributed file I/O for migrated processes. Currently, 
the checkpointing mechanism has several limitations that are 
inherited from the implementation of EPCKPT. This includes the 
inability to checkpoint sockets and certain System V objects such 
as shared memory and semaphores are yet unsupported. However, 
such additions are implementable and are being worked on. A 



slightly more complicated problem involves the checkpointing of 
processes that access certain physical devices, as the Linux driver 
model is not built to be compatible with checkpointing.  
 
The addition of the fair scheduler with longer timeslice quanta 
showed an improvement in total system throughput. Because of 
this, it is more efficient for servers running compute-intensive 
processes. However, there is a side effect to this if the computer 
running this modified kernel is used as a desktop. The longer 
timeslices given to processes result in a slightly sluggish GUI 
desktop, which means this kernel is only suitable to be deployed 
in servers that are not primarily used with attached GUI terminals. 
This is usually not a problem in clusters and compute-server farms 
that usually run “headless” (without a terminal or console 
attached) anyway.  
 

4. REFERENCES 
 
[1] Foster, I. and Kesselman, K., “The Grid: Blueprint for a New 

Computing Infrastructure”, Morgan-Kaufman Publishing, 
San Francisco, 1999.  

 
[2] Foster, I. and Kesselman, K., “Globus: A Metacomputing 

Infrastructure Toolkit”, Proceedings of the Workshop on 
Environments and Tools for Parallel Scientific Computing, 
SIAM, Lyon, France, August 1996, pp. 115-128. 

 
[3] Kolivas, C., “The LCK Patchset”, 

<http://www.plumlocosoft.com/kernel/>, May 2004. 
 
[4] Kleiman, S.R., “Vnodes: An Architecture for Multiple File 

System Types in Sun Unix”, USENIX Association: Summer 
Conference Proceedings, Atlanta, 1986, pp. 238-247.  

 
[5] Litzkow, M., Livny, M., and Mutka M., “Condor : A hunter 

of idle workstations”, Proceedings of the Eighth Conference 
on Distributed Computing Systems, San Jose, California, 
June 1988. 

 
[6] Malita, F.,“Linux Userspace Filesystem”, 

<http://lufs.sourceforge.net/lufs/ >, November 2003.  
 
[7] Pike, R., Presotto, D., Thompson, K. and Trickey, H. “Plan 9 

from Bell Labs”, Proc. of the Summer 1990 UKUUG Conf., 
London, July 1990, pp. 1-9 

 
[8] Pinhiero, E., “Truly-Transparent Checkpointing of Parallel 

Application”, Working Draft. 
<http://www.research.rutgers.edu/~edpin/epckpt/>, 
November 2003. 

 
[9] White, C., “Performance Testing The Linux Kernel : The 

Reaim Workload”, Proceedings of the Linux Symposium, 
Ottawa, Ontario, Canada, 2003, pp.481-494 

 


