
Regional Computer Science Postgraduate Conference (ReCSPC’06)

Case Studies In Modern Dynamic Adaptive Operating Systems

Nur Hussein

Computer-Aided Translation Unit
School of Computer Science

Universiti Sains Malaysia
11800 Pulau Pinang

Malaysia
hussein@cs.usm.my

ABSTRACT
Dynamic adaptive operating systems are operating systems that are able to provide a high degree of
customisability in a flexible, configurable environment to users and applications. This customization can
occur during run-time or boot-time, hence enabling the operating system to adapt to different workloads.
This paper is a survey of three different kernels utilizing three different approaches to creating this
capability: Linux with loadable kernel modules, Xok which is an exokernel and K42 which is a
microkernel. A discussion of the tradeoffs between the three different implementation strategies is
discussed.

KEYWORDS
Operating systems, microkernels, exokernels, dynamic adaptive kernels, Linux, K42, Xok

1. Introduction
Operating systems designers have long grappled
with the problem of getting their systems to work
well under a variety of workloads. Frequently,
the algorithms and policies of a general purpose
operating system kernel need to work adequately
for all of the different applications that will run
on it. Unfortunately, algorithms and policies that
allow one type of application to run well may
hinder the performance of other types of
applications. For example, a scheduler policy
that favours the throughput of long running CPU
intensive processes will cause processes that rely
on low latency scheduling to suffer (such as
multimedia applications) [4].

On most production operating systems, policies
are optimised to accommodate the most common
workloads, and thus will perform adequately well
(although not at an optimum) for the majority of
users. However, such operating systems are
known to operate at less-than-optimal
performance for specialised applications such as
large databases, and also when the workload hits
“corner cases”. There is an active area of
research which aims to enable operating systems
to adapt to the changes in workload demands and
provide an efficient operating environment for
the workloads that it has to handle. This paper is
a review of 3 approaches to dynamic adaptive
operating systems, illustrated by 3 different
operating system kernels: Linux, Xok [6] and
K42 [5].

2. Taxonomy And Nomenclature
Denys et al. [2] define a taxonomy for
customizable operating systems that is divided
into two orthogonal evaluation criteria:

(i) The initiator of the OS adaptation

 A human administrator
 An application that the OS runs
 Automatic adaptation by the OS itself

(ii) The time that adaptation occurs
 Static adaptation at design/build/install

time
 Dynamic adaptation at boot time or run

time

In this paper, we are concerned with operating
systems that offer dynamic adaptation. Dynamic
adaptation takes place when parts of the
operating system can be selected, used and
replaced at will when the operating system is
running, or when the system is first booted. All
the operating systems discussed here imply that a
human administrator is required for adaptation,
and no automatic updates of the OS or
applications takes place.

3. Linux : A Monolithic Kernel
Linux was originally designed as a monolithic
kernel, and to the time of writing, still remains so
for most of its implementation. The facility of
loadable kernel modules was added to the Linux
kernel as soon as it became a usable system, and
is currently a standard feature on the Linux-based
systems.

Regional Computer Science Postgraduate Conference (ReCSPC’06)

Loadable kernel modules are compartmentalised
blocks of compiled kernel code that can be
loaded and unloaded into kernelspace at will by
the administrator.

Once a kernel module is loaded into the kernel,
the module loader will link the code in
dynamically. Then the module initialization
functions are called. The entire kernel namespace
and codespace will be visible to the module. The
result of this is that an error in a module will
cause the entire kernel to fail.

Linux employs a relatively simple mechanism to
ensure safe loading and unloading of kernel
module. All kernel modules need to be accessed
while setting a reference counter. A module may
only be unloaded when the reference count
accessing it is 0.

The Linux implementation of dynamic code
loading is relatively straightforward, and is
deployed in production systems. The next
sections will discuss experimental kernels which
use more interesting techniques for runtime OS
dynamic adaptation.

4. Xok : An Exokernel

An exokernel [3] is an innovative twist on the
idea of microkernels, where instead of
implementing operating system services as
servers in userspace, they are implemented as a
user library. The kernel itself is a stripped-
down, bare-bones implementation that only
provides protected access to the bare hardware.
Exokernels provide a mechanism to multiplex
the hardware, divide the memory into pages,
manage the CPU, translation look-aside buffer
(TLB), addressing contexts, interrupts and
exceptions. Much of the higher level kernel
functions such as networking, memory
management and filesystems are implemented in
user libraries which can be linked to different
applications. These user libraries, called library
operating systems, set the policies of the system.

A consequence of this design is that different
applications can link to different library
operating systems based on the requirements of
the application. This allows different library
operating systems to execute different
implementations of OS services at runtime. If a
specific application needs to swap
implementations, it can be done as easily as re-
linking the application with another library OS
(see Figure 1, adapted from a diagram in [8]).

Figure 1: Organisation Of Exokernels,
Library Operating Systems And Applications

Xok is an exokernel designed to run on Intel X86
hardware. Xok was used as a test platform by
Kaashoek et al. to evaluate exokernels as a viable
platform for running applications with custom
operating system libraries. The default library
OS that runs on Xok is called ExOS, which
supports a 4.4BSD userspace.

It was found by Kaashoek et al. that Xok/ExOS
performed as well with FreeBSD and OpenBSD,
two production operating systems which also
implement a 4.4BSD userspace. Most of the
programs that run on FreeBSD and OpenBSD
can run unmodified on Xok/ExOS, and thus
proves the viability of an exokernel based
environment compared to traditional operating
systems. However, the more interesting
experiments carried out by Kaashoek et al. were
the customised instances of OS libraries linked to
two different applications: XCP, a file copying
program that exploits a low-level disk interface
and Cheetah, a web server which uses a
customised fast I/O library. In both cases, the
domain-specific implementations of OS
functionality helped the programs achieve better
performance than their counterparts on
traditional operating systems.

5. K42 : A Microkernel

K42[4] is a research microkernel for 64-bit
cache-coherent multiprocessors. It was designed
from the ground up to be modular and object-
oriented in design. K42 has explicit support
online reconfiguration of its software
components. This can be used for two things:

(i) Hot-swapping of kernel components, while

the system is executing
(ii) Interpositioning of software components,

which is providing a software wrapper for
existing components, hence extending its
functionality (for example, dynamically

Hardware

Exokernel

LibOS
1

Application 1

LibOS
2

Application 2

Regional Computer Science Postgraduate Conference (ReCSPC’06)

inserting a profiler like in Figure 2, adapted
from a diagram in [9]).

Figure 2: Interpositioning A Profiler Around

A Kernel Component

Soules et al.[9] describe the four main
requirements necessary to support online
reconfiguration of a running kernel:

(i) Each software component must be

encapsulated within well-defined boundaries
and interfaces.

(ii) Software components must be able to
achieve quiescent state when state transfer
takes place. A quiescent state is when the
component enters a state where all data
access activity to and from the component
has stopped and it is safe to swap it out.

(iii) It must be possible to transfer state between
the two software components being hot-
swapped.

(iv) All external references to the component
must be updated.

In the implementation of K42, the choice of
programming paradigm and language (it was
designed in an object-oriented way and
implemented in C++) helped the kernel
components define the interfaces between
software components. Components designed to
be hot-swapped are also created to be compatible
enough so that state transfer can take place. Also,
all references to objects take place through an
intermediate lookup table called the Object
Translation Table (OTT). Therefore, whenever
components are replaced, only the OTT needs to
be updated for that object and all external
references are automatically updated.

The K42 kernel determines quiescent states by
applying a technique similar to the Read-Copy-
Update (RCU) algorithm [7]. All events in K42
occur with the creation of kernel threads, which
are short lived and non-blocking. All kernel
threads are associated with a “generation” or
time period when the thread is created. K42 uses
a counter to determine if the total threads
generated within a generation have terminated.

When this happens, no new threads are created
and it enters a quiescent state. RCU-based
techniques have also been used in recent Linux
kernels to support safe module loading and
unloading.

The hot-swap operation in K42 is described by
Baumann et al. as taking place in six steps [1]:

(i) Before the update, all access to an object's

methods takes place through the OTT.
(ii) Using interpositioning, a mediator object is

used to track incoming method invocations
to an object that is targeted as a hot-swap
candidate. It forwards requests for calls to
the object but also checks the thread
generation and waits for the number of
threads for the previous generation to reach
zero.

(iii) Once the previous generations' threads have
finished running, the mediator object will
block new thread creation requests until all
threads from the current generation have
also terminated. Recursive calls however are
not blocked to avoid deadlock.

(iv) Once all the calls that the mediator has
forwarded has completed, the object reaches
quiescent state and can be safely swapped
out. The new object must be able to receive
the state information compatibly from the
old one, when the state transfer takes place.

(v) The OTT is updated by the mediator to point
to the new object, and the method invocation
calls currently blocked are forwarded to the
new object.

(vi) The mediator and the old object are
destroyed (de-allocated).

6. Discussion On Design Approaches

Trade-offs exists between each of the design
approaches used by Linux, Xok and K42.
Monolithic kernels such as Linux perform very
well, but at the expense of modularity and inter-
component isolation. A failure in any part of
Linux will cause the entire system to fail, causing
a kernel panic. Hence, inserting buggy or
unstable code into a running kernel can have
disastrous consequences.

Microkernels have long since been praised for
their modularity. K42’s hot-swapping
mechanism provides a level of flexibility that
monolithic kernels cannot match. However, this
flexibility comes at a price. When swapping
components, the system has no way to verify that
the functionality provided by the new component
safely replaces the functionality in the older
component. As such, this problem cannot be
solved automatically, thus programmer diligence

Kernel
Component

Profiler

Request Response

Regional Computer Science Postgraduate Conference (ReCSPC’06)

is required to ensure safe component-swapping
occurs.

Finally, exokernels provide an interesting look at
an alternative design for operating systems. We
also get a remarkable degree of flexibility in
customising operating systems services to tailor
to different applications. However, creating
custom library operating systems is a more
complex endeavour than simply tuning existing
production kernels to adapt to specific
application behaviour. As of writing, no
exokernel based system has been deployed in
production, and it remains to be seen if the
concept will gain traction amongst users.

7. Conclusion
While three different kernels have been
discussed in this paper, this is by no means an
exhaustive list. However, the most promising or
interesting methods in modern research and
production kernels that employ dynamic adaptive
behaviour have been covered in this paper. It is
hoped that this survey is a good starting point for
those interested in recent operating systems
developments to gather more information on the
subject.

8. Acknowledgements
Thank you to Seth Arnold, Bert Hubert, Zwane
Mwaikambo, William Lee Irwin III, C. Donour
Sizemore, and the rest of my friends who have
given me input on the material in this paper.

9. References

[1] Baumann, A., Kerr, J., Appavoo, J., Da

Silva, D., Krieger, O., and Wisniewski,
R.W., “Module Hot-Swapping for Dynamic
Update and Reconfiguration in K42”,
Proceedings of the 6th Linux.Conf.Au, Apr
2005.

[2] Denys, G., Piessens, F., and Matthijs, F., “A
Survey of Customizability in Operating
Systems Research”, ACM Computing
Surveys, 34(4), Dec 2002, pp. 450—468.

[3] Engler, D.R., Kaashoek, M.F., and O’Toole,
J. Jr., “Exokernel : An Operating System
Architecture for Application-Specific
Resource Management”, Proceedings of the
Fifteenth ACM Symposium on Operating
Systems Principles, Dec 1995, pages 251—
266.

[4] Hussein, N., Kolivas, C., Haron, F., and
Chan, H.Y., “Extending the Linux Operating
System for Grid Computing”, Proceedings
of the APAN Network Research Workshop,
2004.

[5] IBM Research, “The K42 Operating
System”, http://www.research.ibm.com/k42,
2006

[6] Kaashoek, M.F., Engler, D.R., Ganger, G.R.,
Briceño, H.M., Hunt, R., Mazières, D.,
Pinckney, D., Grimm, R., Jannotti, J., and
Mackenzie, K., “Application Performance
and Flexibility on Exokernel Systems”,
Proceedings of the Sixteenth ACM
symposium on Operating Systems
Principles, 1997, pp. 52—65.

[7] McKenney, P., Sarma, D., Arcangeli, A.,
Kleen, A., Krieger, O., and Russell, R.,
“Read Copy Update”, in Proceedings of the
Ottawa Linux Symposium, 2002.

[8] MIT Parallel and Distributed Operating
Systems Group, “MIT Exokernel Operating
System”, http://pdos.csail.mit.edu/exo.html,
2006.

[9] Soules, C.A.N., Appavoo, J., Hui, K., Da
Silva, D., Ganger, G.R., Krieger, O.,
Stumm, M., Wisniewski, R.W., Auslander,
M., Ostrowski, M., Rosenburg, B., and
Xenidis, J., “System Support for Online
Reconfiguration”, Proceedings of the
USENIX Annual Technical Conference, Jun
2003.

