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ABSTRACT 
Dynamic adaptive operating systems are operating systems that are able to provide a high degree of 
customisability in a  flexible, configurable environment to users and applications. This customization can 
occur during run-time or boot-time, hence enabling the operating system to adapt to different  workloads. 
This paper is a survey of three different kernels utilizing three different approaches to creating this 
capability: Linux with loadable kernel modules, Xok which is an  exokernel and K42 which is a 
microkernel. A discussion of the tradeoffs between the three different implementation strategies is 
discussed. 
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1. Introduction  
Operating systems designers have long grappled 
with the problem of getting their systems to work 
well under a variety of workloads. Frequently, 
the algorithms and policies of a general purpose 
operating system kernel need to work adequately 
for all of the different applications that will run 
on it. Unfortunately, algorithms and policies that 
allow one type of application to run well may 
hinder the performance of other types of 
applications. For example, a scheduler policy 
that favours the throughput of long running CPU 
intensive processes will cause processes that rely 
on low latency scheduling to suffer (such as 
multimedia applications) [4].  
 
On most production operating systems, policies 
are optimised to accommodate the most common 
workloads, and thus will perform adequately well 
(although not at an optimum) for the majority of 
users. However, such operating systems are 
known to operate at less-than-optimal 
performance for specialised applications such as 
large databases, and also when the workload hits 
“corner cases”.  There is an active area of 
research which aims to enable operating systems 
to adapt to the changes in workload demands and 
provide an efficient operating environment for 
the workloads that it has to handle.  This paper is 
a review of 3 approaches to dynamic adaptive 
operating systems, illustrated by 3 different 
operating system kernels: Linux, Xok [6] and 
K42 [5].  
 
 

2. Taxonomy And Nomenclature 
Denys et al. [2] define a taxonomy for 
customizable operating systems that is divided 
into two orthogonal evaluation criteria: 
 
(i) The initiator of the OS adaptation 

 A human administrator 
 An application that the OS runs 
 Automatic adaptation by the OS itself 

(ii) The time that adaptation occurs 
 Static adaptation at design/build/install 

time 
 Dynamic adaptation at boot time or run 

time 
 
In this paper, we are concerned with operating 
systems that offer dynamic adaptation. Dynamic 
adaptation takes place when parts of the 
operating system can be selected, used and 
replaced at will when the operating system is 
running, or when the system is first booted. All 
the operating systems discussed here imply that a 
human administrator is required for adaptation, 
and no automatic updates of the OS or 
applications takes place. 
 
3. Linux : A Monolithic Kernel 
Linux was originally designed as a monolithic 
kernel, and to the time of writing, still remains so 
for most of its implementation. The facility of 
loadable kernel modules was added to the Linux 
kernel as soon as it became a usable system, and 
is currently a standard feature on the Linux-based 
systems. 
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Loadable kernel modules are compartmentalised 
blocks of compiled kernel code that can be 
loaded and unloaded into kernelspace at will by 
the administrator.  
 
Once a kernel module is loaded into the kernel, 
the module loader will link the code in 
dynamically. Then the module initialization 
functions are called. The entire kernel namespace 
and codespace will be visible to the module. The 
result of this is that an error in a module will 
cause the entire kernel to fail.  
 
Linux employs a relatively simple mechanism to 
ensure safe loading and unloading of kernel 
module. All kernel modules need to be accessed 
while setting a reference counter.  A module may 
only be unloaded when the reference count 
accessing it is 0. 
 
The Linux implementation of dynamic code 
loading is relatively straightforward, and is 
deployed in production systems. The next 
sections will discuss experimental kernels which 
use more interesting techniques for runtime OS 
dynamic adaptation. 
 
4. Xok : An Exokernel 
 
An exokernel [3] is an innovative twist on the 
idea of microkernels, where instead of 
implementing operating system services as 
servers in userspace, they are implemented as a 
user library.  The kernel itself is a stripped-
down, bare-bones implementation that only 
provides protected access to the bare hardware. 
Exokernels provide a mechanism to multiplex 
the hardware, divide the memory into pages, 
manage the CPU,  translation look-aside buffer 
(TLB), addressing contexts, interrupts and 
exceptions. Much of the higher level kernel 
functions such as networking, memory 
management and filesystems are implemented in 
user libraries which can be linked to different 
applications. These user libraries, called library 
operating systems, set the policies of the system. 
 
A consequence of this design is that different 
applications can link to different library 
operating systems based on the requirements of 
the application. This allows different library 
operating systems to execute different 
implementations of OS services at runtime. If a 
specific application needs to swap 
implementations,  it can be done as easily as re-
linking the application with another library OS 
(see Figure 1, adapted from a diagram in [8]).  

 
 

Figure 1: Organisation Of Exokernels, 
Library Operating Systems And Applications 

 
Xok is an exokernel designed to run on Intel X86 
hardware. Xok was used as a test platform by 
Kaashoek et al. to evaluate exokernels as a viable 
platform for running applications with custom 
operating system libraries.  The default library 
OS that runs on Xok is called ExOS, which 
supports a 4.4BSD userspace.  
 
It was found by Kaashoek et al. that Xok/ExOS 
performed as well with FreeBSD and OpenBSD, 
two production operating systems which also 
implement a 4.4BSD userspace. Most of the 
programs that run on FreeBSD and OpenBSD 
can run unmodified on Xok/ExOS, and thus 
proves the viability of an exokernel based 
environment compared to traditional operating 
systems. However, the more interesting 
experiments carried out by Kaashoek et al. were 
the customised instances of OS libraries linked to 
two different applications: XCP, a file copying 
program that exploits a low-level disk interface 
and Cheetah, a web server which uses a 
customised fast I/O library. In both cases, the 
domain-specific implementations of OS 
functionality helped the programs achieve better 
performance than their counterparts on 
traditional operating systems. 
 
5. K42 : A Microkernel 
 
K42[4] is a research microkernel for 64-bit 
cache-coherent multiprocessors. It was designed 
from the ground up to be modular and object-
oriented in design. K42 has explicit support 
online reconfiguration of its software 
components. This can be used for two things: 
 
(i) Hot-swapping of kernel components, while 

the system is executing 
(ii) Interpositioning of software components, 

which is providing a software wrapper for 
existing components, hence extending its 
functionality (for example, dynamically 
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inserting a profiler like in Figure 2, adapted 
from a diagram in [9]). 

 

 
Figure 2: Interpositioning A Profiler Around 

A Kernel Component 
 
Soules et al.[9] describe the four main 
requirements necessary to support online 
reconfiguration of a running kernel: 
 
(i) Each software component must be 

encapsulated within well-defined boundaries 
and interfaces. 

(ii) Software components must be able to 
achieve quiescent state when state transfer 
takes place. A quiescent state is when the 
component enters a state where all data 
access activity to and from the component 
has stopped and it is safe to swap it out. 

(iii) It must be possible to transfer state between 
the two software components being hot-
swapped. 

(iv) All external references to the component 
must be updated. 

 
In the implementation of K42, the choice of 
programming paradigm and language (it was 
designed in an object-oriented way and 
implemented in C++) helped the kernel 
components define the interfaces between 
software components.  Components designed to 
be hot-swapped are also created to be compatible 
enough so that state transfer can take place. Also, 
all references to objects take place through an 
intermediate lookup table called the Object 
Translation Table (OTT). Therefore, whenever 
components are replaced, only the OTT needs to 
be updated for that object and all external 
references are automatically updated. 
 
The K42 kernel determines quiescent states by 
applying a technique similar to the Read-Copy-
Update (RCU) algorithm [7]. All events in K42 
occur with the creation of kernel threads, which 
are short lived and non-blocking. All kernel 
threads are associated with a “generation” or 
time period when the thread is created. K42 uses 
a counter to determine if the total threads 
generated within a generation have terminated. 

When this happens, no new threads are created 
and it enters a quiescent state. RCU-based 
techniques have also been used in recent Linux 
kernels to support safe module loading and 
unloading. 
 
The hot-swap operation in K42 is described by 
Baumann et al. as taking place in six steps [1]: 
 
(i) Before the update, all access to an object's 

methods takes place through the OTT. 
(ii) Using interpositioning, a mediator object is 

used to track incoming method invocations 
to an object that is targeted as a hot-swap 
candidate. It forwards requests for calls to 
the object but also checks the thread 
generation and waits for the number of 
threads for the previous generation to reach 
zero. 

(iii) Once the previous generations' threads have 
finished running, the mediator object will 
block new thread creation requests until all 
threads from the current generation have 
also terminated. Recursive calls however are 
not blocked to avoid deadlock. 

(iv) Once all the calls that the mediator has 
forwarded has completed, the object reaches 
quiescent state and can be safely swapped 
out. The new object must be able to receive 
the state information compatibly from the 
old one, when the state transfer takes place. 

(v) The OTT is updated by the mediator to point 
to the new object, and the method invocation 
calls currently blocked are forwarded to the 
new object. 

(vi) The mediator and the old object are 
destroyed (de-allocated). 

 
6. Discussion On Design Approaches 
 
Trade-offs exists between each of the design 
approaches used by Linux, Xok and K42. 
Monolithic kernels such as Linux perform very 
well, but at the expense of modularity and inter-
component isolation. A failure in any part of 
Linux will cause the entire system to fail, causing 
a kernel panic. Hence, inserting buggy or 
unstable code into a running kernel can have 
disastrous consequences. 

Microkernels have long since been praised for 
their modularity. K42’s hot-swapping 
mechanism provides a level of flexibility that 
monolithic kernels cannot match. However, this 
flexibility comes at a price. When swapping 
components, the system has no way to verify that 
the functionality provided by the new component 
safely replaces the functionality in the older 
component.  As such, this problem cannot be 
solved automatically, thus programmer diligence 
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is required to ensure safe component-swapping 
occurs. 

Finally, exokernels provide an interesting look at 
an alternative design for operating systems. We 
also get a remarkable degree of flexibility in 
customising operating systems services to tailor 
to different applications. However, creating 
custom library operating systems is a more 
complex endeavour than simply tuning existing 
production kernels to adapt to specific 
application behaviour. As of writing, no 
exokernel based system has been deployed in 
production, and it remains to be seen if the 
concept will gain traction amongst users. 

 

7. Conclusion 
While three different kernels have been 
discussed in this paper, this is by no means an 
exhaustive list. However, the most promising or 
interesting methods in modern research and 
production kernels that employ dynamic adaptive 
behaviour have been covered in this paper.  It is 
hoped that this survey is a good starting point for 
those interested in recent operating systems 
developments to gather more information on the 
subject. 
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