
DISTRIBUTED PREEMPTIVE PROCESS
MANAGEMENT WITH CHECKPOINTING AND

MIGRATION FOR A LINUX-BASED GRID
OPERATING SYSTEM

HTIN PAW OO @ NUR HUSSEIN

UNIVERSITI SAINS MALAYSIA

2006

DISTRIBUTED PREEMPTIVE PROCESS

MANAGEMENT WITH CHECKPOINTING AND

MIGRATION FOR A LINUX-BASED GRID

OPERATING SYSTEM

by

HTIN PAW OO @ NUR HUSSEIN

Thesis submitted in ful�lment of the requirements

for the degree of

Master of Science

June 2006

To my parents

ii

ACKNOWLEDGEMENTS

I thank God for giving me the strength to persevere through all the trials of this postgrad-

uate degree. I would like to thank my late father Dr. Mohd. Yunus for inspiring me to

get into research, my mother Pn. Bibi Zahida for patiently supporting me throughout this

experience, my supervisors Dr. Fazilah Haron and Dr. Chan Huah Yong for their wisdom

and guidance, and also the entire faculty of the School of Computer Science in Universiti

Sains Malaysia.

I would like to convey my deepest gratitude to Dr. Abdul Rahman Othman, Dr. Jim

Basney, Dr. Mor Harchol-Balter, Dr. Low Heng Chin, Dr. Yen Siew Hwa, and Dr. Quah

Soon Hoe for taking some of their time to shed some insight into my research problem.

I would also like to thank Josef Sipek for his help and for lending me his computer

cluster, Lim Lian Tze for teaching me LATEX, Dr. Con Kolivas for his scheduler expertise,

and for their expert technical (and nontechnical) advice, Seth Arnold, Dr. Daniel Berlin,

Je� Dike, Pat Erley, Henrý Þór Baldursson, Bert Hubert, William Lee Irwin III, Chris-

tian Leber, Ahmed Masud, Zwane Mwaikambo, Eduardo Pinheiro, Rik Van Riel, Steinn

Sigurðarson and the rest of my friends out there on the internet who have patiently endured

my questions over the past three years.

iii

TABLE OF CONTENTS

Page

Acknowledgements iii

Table of Contents iv

List of Tables x

List of Figures xi

Abstrak xiii

Abstract xiv

CHAPTER 1 � INTRODUCTION
1.1 Concerning Grid Computing 1

1.2 Research Motivation 2

1.2.1 Investigating The Factors That In�uence Job Throughput 2

1.2.2 Introducing Distributed Process Management Support Into
GNU/Linux 3

1.2.3 Reducing Cruft 6

1.2.4 Enabling Internet Computing 7

1.3 Research Objectives 7

1.3.1 Integrating Process Checkpointing And Grid Process Scheduling Into
The Linux Kernel 7

1.3.2 Creating A Prototype Grid Process Management System 8

1.3.3 Enabling Wide-Area Process Migration 8

1.3.4 Investigating The Factors In�uencing Throughput In The Grid OS 9

1.4 Scope Of Research 9

1.5 Contributions 10

1.6 Summary And Organisation Of Thesis 12

CHAPTER 2 � RELATED WORK

iv

2.1 Introduction 14

2.2 The Grid Environment 14

2.3 Operating Systems Support For Grid Computing 18

2.3.1 The Centralised/Local Operating System 18

2.3.2 The Network Operating System 18

2.3.3 The Distributed Operating System 19

2.3.4 The Grid Operating System 20

2.4 Resource Discovery 21

2.5 Grid Scheduling Stages 23

2.6 Distributed Scheduling Algorithms 25

2.6.1 Local and Global Scheduling 26

2.6.2 Static Vs. Dynamic 26

2.6.3 Centralised Vs. Distributed 27

2.6.4 Cooperative Vs. Non-cooperative 27

2.6.5 Source-initiative Vs. Server-initiative 28

2.7 Process Checkpointing And Migration 29

2.7.1 Checkpointing Techniques 29

2.7.2 Process Migration Overview 30

2.7.3 Motivation For Process Migration 30

2.7.4 Migration Algorithms 33

2.8 Systems Which Implement Process Migration 35

2.8.1 Condor : A Userspace Implementation 35

2.8.2 Amoeba : A Microkernel Implementation 36

2.8.3 Sprite : A Monolithic Kernel Implementation 37

2.8.4 MOSIX : Extending An Existing Unix-like Kernel 37

2.8.5 Xen : Virtual Machine Migration 38

2.9 Grid Operating Systems 38

2.9.1 Federated MOSIX Clusters 39

v

2.9.2 The Plan 9 Approach 39

2.10 Summary 40

CHAPTER 3 � DESIGN GOALS
3.1 Introduction 42

3.2 Design Overview 42

3.2.1 Extending GNU/Linux To Become A Grid Operating System 42

3.3 Goals 44

3.3.1 Transparency 44

3.3.2 Improved Throughput 47

3.3.3 Adaptability To Dynamic Resources 48

3.3.4 Decentralisation 50

3.3.5 Residual Dependencies 50

3.4 Wide Area Process Migration 51

3.5 Performance Metrics 53

3.6 Summary 54

CHAPTER 4 � DESIGN DETAILS AND METHODOLOGY
4.1 Introduction 55

4.2 System Structure 55

4.2.1 Architecture Of The Zinc-based Grid 55

4.2.2 Administrative Domain Interaction 57

4.2.3 The Execution Domain And Controller 58

4.3 System Information 61

4.3.1 Processor Load 61

4.3.2 Threshold 61

4.4 Managing Distributed Processes 62

4.4.1 Global Process IDs 62

vi

4.4.2 Selecting Processes For Migration 64

4.5 Scheduling 65

4.5.1 Name Dropper : Resource Discovery 65

4.5.2 Zinctask : System Selection 68

4.5.3 Zincd : Job Execution And Monitoring 72

4.6 Control Software 72

4.7 Summary 74

CHAPTER 5 � IMPLEMENTATION
5.1 Introduction 75

5.2 Implementation Overview 75

5.3 Process Checkpointing 77

5.4 The Schedulers 86

5.4.1 The Kernel Scheduler 86

5.4.2 The Zinc Userspace Scheduler 88

5.5 Resource Discovery And Monitoring 94

5.5.1 Obtaining CPU Load 95

5.5.2 Obtaining Total Free Memory And Usage 95

5.5.3 Preventing Overloading 96

5.6 Command Line Tools 97

5.7 Summary 98

CHAPTER 6 � EXPERIMENTS AND DISCUSSION
6.1 Introduction 99

6.2 Experimental Environment 99

6.3 Wide Area Process Migration 101

6.3.1 Experimental Design And Methodology 101

6.3.2 Experimental Results 103

vii

6.4 Factors That In�uence Job Throughput On The Grid : Experiments And
Results 104

6.4.1 Experimental Design And Methodology 104

6.4.2 Experimental Results 108

6.5 The Factors That In�uence Throughput : Discussion 109

6.5.1 The E�ects Of Checkpointing And Preemptive Migration 110

6.5.2 The E�ects Of The Zinctask Algorithm 114

6.5.3 The E�ects Of Process Length 114

6.5.4 The E�ects Of Host Administrative Domain Size And Power 114

6.5.5 Weaknesses Of The Experimental Model 115

6.6 Summary 116

CHAPTER 7 � CONCLUSIONS AND FUTURE WORK
7.1 Introduction 118

7.2 Objectives Revisited 118

7.2.1 Integrating Process Checkpointing And Grid Process Scheduling Into
The Linux Kernel 118

7.2.2 Creating A Prototype Grid Process Management System 119

7.2.3 Enabling Wide-Area Process Migration 119

7.2.4 Investigating The Factors In�uencing Throughput In The Grid OS 119

7.3 Evaluation Of Design Goals 120

7.3.1 Transparency And Residual Dependencies 120

7.3.2 Throughput 122

7.3.3 Decentralisation 122

7.3.4 Adaptability To Resource Pool 123

7.4 Contributions Revisited 123

7.5 Future Work 124

7.5.1 Grid Process Management 125

7.5.2 Grid Filesystems 126

viii

7.5.3 Security 126

7.6 Summary 127

References 128

List of Publications 135

APPENDICES 136
APPENDIX A �Univariate ANOVA Of Results 137

ix

LIST OF TABLES

Page

Table 5.1 Fields representing open �les of a process in struct files_struct
*files 82

Table 5.2 Fields representing process address space in struct mm_struct *mm 83

Table 6.1 Administrative Domain 1 (Frodo) in USM, Penang 99

Table 6.2 Administrative Domain 2 (Grid010) in USM, Penang 100

Table 6.3 Administrative Domain 3 (Aurora) in USM, Penang 101

Table 6.4 Administrative Domain 4 (Box0) in Long Island, New York 101

Table 6.5 Local-area migration times for processes p1 (5,335,040 bytes) and
p2 (26,306,560 bytes) 103

Table 6.6 Wide-area migration times for processes p1 (5,335,040 bytes) and
p2 (26,306,560 bytes) 103

Table 6.7 Ratios of long to medium to short jobs 107

Table 6.8 Factors studied in the throughput experiment 107

Table 6.9 Process throughput experiment data (each cell contains number of
processes completed per hour for each factorial combination with 2
replications) 109

Table A.1 Between-Subjects factors 137

Table A.2 Tests of between-subjects e�ects 138

x

LIST OF FIGURES

Page

Figure 1.1 The Uni�cation Of Operating Systems And Grid Computing 12

Figure 2.1 Casavant and Kuhl's Taxonomy of Task Scheduling 25

Figure 4.1 Administrative Domains On The Grid 56

Figure 4.2 Administrative Domain Interaction Details 57

Figure 4.3 The Scheduler And Its Execution Domain 58

Figure 4.4 Mapping An Administrative Domain Onto A Physical System 59

Figure 4.5 The Kernel And Monitoring Daemon 60

Figure 4.6 The Zinctask algorithm 71

Figure 4.7 Code to generate a CPU-intensive process 73

Figure 4.8 Code to generate programs with di�erent memory footprint sizes 74

Figure 5.1 The structure of struct pt_regs for the i386 architecture 83

Figure 5.2 The structure of struct open_files 84

Figure 5.3 Calling the open() system call 85

Figure 5.4 Calling the dup2() system call 85

Figure 5.5 Calling the lseek() system call 85

Figure 5.6 Checkpointing And Migration 93

Figure 6.1 Layout Of Hardware In The Zinc Grid Test-bed 100

Figure 6.2 Migration Test Con�guration 102

Figure 6.3 Checkpointing × Placement Strategy × Point of Entry Interaction
At Aurora 110

Figure 6.4 Checkpointing × Placement Strategy × Point of Entry Interaction
At Grid010 110

Figure 6.5 Checkpointing × Placement Strategy × Point of Entry Interaction
At Frodo 111

xi

Figure 6.6 Length of Process Majority × Point of Entry Interaction 111

Figure 6.7 Length of Process Majority × Checkpointing × Placement
Strategy for Majority Long Processes 112

Figure 6.8 Length of Process Majority × Checkpointing × Placement
Strategy for Majority Medium Processes 112

Figure 6.9 Length of Process Majority × Checkpointing × Placement
Strategy for Majority Short Processes 113

Figure A.1 Scatterplot of Standardised Residuals vs. Yield 137

xii

PENGURUSAN PROSES PREEMPTIF
TERAGIH DENGAN PENITIKSEMAKAN DAN
MIGRASI UNTUK SISTEM PENGOPERASIAN

GRID BERASASKAN LINUX

ABSTRAK

Kemunculan perkomputeran grid telah membolehkan perkongsian sumber perkomputer-

an teragih antara peserta-peserta organisasi maya. Walau bagaimanapun, sistem pengop-

erasian kini tidak memberi sokongan paras rendah secukupnya untuk perlaksanaan perisian

grid. Kemunculan suatu kelas sistem pengoperasian yang dipanggil sistem pengoperasian

grid memberikan pengabstrakan peringkat sistem untuk sumber-sumber grid. Tesis ini

mencadangkan penambahan pengurusan proses preemptif teragih kepada sistem pengop-

erasian GNU/Linux untuk menjadikannya sistem pengoperasian grid. Dengan menampal

inti Linux dengan kemudahan penitiksemakan yang dipanggil EPCKPT, pembuktian kon-

sep perisian tengah yang dipanggil Zinc telah dibina. Perisian Zinc menggunakan kemu-

dahan penitiksemakan dengan cekap untuk membolehkan pengurusan proses teragih yang

merangkumi penskedulan, penempatan proses grid dan migrasi proses grid. Dengan meng-

gunakan daya pemprosesan (throughput) sebagai metrik pengukuran prestasi, kecekapan

kemudahan migrasi proses telah diukur pada pelantar ujian grid yang terdiri daripada

kluster PC di Pusat Pengajian Sains Komputer, Universiti Sains Malaysia. Proses-proses

grid juga telah berjaya dimigrasikan melalui internet. Eksperimen telah dijalankan yang

menunjukkan bahawa migrasi proses preemptif yang dijalankan oleh sistem pengoperasian

membantu mengekalkan daya pemprosesan (throughput) yang tinggi tidak mengira strategi

penempatan proses yang digunakan.

xiii

DISTRIBUTED PREEMPTIVE PROCESS
MANAGEMENT WITH CHECKPOINTING AND

MIGRATION FOR A LINUX-BASED GRID
OPERATING SYSTEM

ABSTRACT

The advent of grid computing has enabled distributed computing resources to be shared

amongst participants of virtual organisations. However, current operating systems do not

adequately provide enough low-level facilities to accommodate grid software. There is an

emerging class of operating systems called grid operating systems which provide systems-

level abstractions for grid resources. This thesis proposes the addition of preemptive dis-

tributed process management to GNU/Linux, thus building a subset of the required func-

tionality to turn GNU/Linux into a grid operating system. By patching the Linux kernel

with a popular checkpointing facility called EPCKPT, a proof-of-concept grid middleware

called Zinc was constructed which e�ectively makes use of checkpointing to provide dis-

tributed process management which encompasses scheduling, placement and migration of

grid processes. By using job throughput as our performance metric, the e�ectiveness of the

process migration facility was measured on a testbed grid which consisted of PC clusters

in the School of Computer Science at Universiti Sains Malaysia. Grid processes were also

successfully migrated over the internet. An experiment was carried out that showed that

preemptive process migration in the operating system helps maintain system throughput

that is consistently high, regardless of the process placement strategy used.

xiv

CHAPTER 1

INTRODUCTION

1.1 Concerning Grid Computing

The growing ubiquity of cheap computing power and high-speed networks have given birth

to distributed computing, which combine the resources of networked computers and har-

ness the resulting combined power of its constituent computing elements. Tanenbaum and

Van Steen [74] describe distributed systems as �a collection of independent computers that

appears to its users as a single coherent system�. From this de�nition, it could be inferred

that a distributed system has a generic goal of providing a transparent and coherent ser-

vice to users of systems comprising more than one physical computing machine. It could

be said that grid computing is a special instance of distributed systems. Grid technology

allows us to collectively perform complex computational tasks that would not be feasible

on a single computer by means of pooling together resources that are shared by various in-

stitutions, organisations and individuals. Foster and Kesselman de�ne computational grids

as �hardware and software infrastructure that provides dependable, consistent, pervasive

and inexpensive access to high-end computational capabilities�[22].

Grid computing grew out of metacomputing, an early e�ort to consolidate disparate

and diverse computing resources to take advantage of the resulting combined computing

power. Previously, a user trying to utilise such a wide collection of di�erent resources had to

put up with manually con�guring and scheduling jobs on di�erent user accounts, machines

and programs. Current developments have produced automated tools and advanced job

1

scheduling and monitoring technologies to assist the user in the sharing of this collection

of resources. These technologies form the fabric of grid computing.

Various approaches have been taken to designing software that control and facilitate

the computational grid. Usually, grid software is implemented as middleware, a layer of

abstraction that lies between user programs and the host computational hardware and

software. Examples of such software are Globus [21], Condor [46] and Legion [27]. These

systems provide a collection of services for both users and user programs to help aggregate

and share computing resources.

This chapter is a prelude to the design and implementation of Zinc, a layer of grid

software for the GNU/Linux operating system developed with the idea of making grid mid-

dleware as transparent and as easy to use as possible, while maximising the job throughput

of the grid. The design of Zinc is from a perspective of an operating systems programmer,

while its implementation covers kernel modi�cations and userspace tools to support those

modi�cations. The primary goal of the system is to provide a foundation for which we can

experiment with the possibilities opened up by extending the operating system to accom-

modate grid computing, with regard to process management. These extensions can be seen

as a �rst step towards the creation of a grid operating system, which is an operating system

that provides an abstraction of grid services to make the technology more transparent and

easy to use by both end-users and programmers.

1.2 Research Motivation

1.2.1 Investigating The Factors That In�uence Job Throughput

Much literature has been written about the e�ect of process migration, scheduling algo-

rithms and other aspects of distributed computing on high-performance problems. How-

2

ever, research on high throughput computing have not been as extensive, and warrants

further investigation. We believe that the grid's primary function is an enabler of high-

throughput computing. Although many or most hardware in the grid is going to provide

high-performance computing facilities to its users, the entire system as a whole exists to

maximise the amount of work done with the resources available. Hence, looking into what

conditions are favourable to increase the throughput in our distributed system is justi�ed,

and the results of our observations can be used to build better grids.

1.2.2 Introducing Distributed Process Management Support Into

GNU/Linux

GNU/Linux1 is a Unix-like operating system which is worked on by various programmers

over the world, both voluntarily and or for commercial purposes sponsored by various

companies. GNU/Linux is a collection of open source programs that make up a free

operating system which can be modi�ed and redistributed by anyone. At the heart of

GNU/Linux is the Linux kernel, a free operating system kernel licensed under the GNU

General Public License (GPL). Linux was initiated by Finnish programmer Linus Torvalds,

and at the time of writing, he continues to spearhead its development in collaboration with

thousands of developers world wide to further improve and enhance the Linux kernel. The

userspace of GNU/Linux consists largely of utilities derived from the GNU project founded

by MIT hacker Richard Stallman to create a truly free Unix-like operating system. Since

GNU/Linux tries to be a clone of Unix, it is also a centralised network-enabled operating

system by design. We have thus chosen GNU/Linux as a platform for our grid operating

system research, so that it can be extended to facilitate grid-speci�c requirements and
1In print, the usage of both the terms �GNU/Linux� and �Linux� refer to the operating system based

on the Linux kernel. There is a di�erence of opinion on whether or not the �GNU� part should be included
when referring to the OS, but for the purpose of this thesis, the distinction between GNU/Linux and Linux
is that GNU/Linux refers to the complete operating system (with userspace, C libraries, compilers and
all) whereas Linux refers to just the Linux kernel.

3

investigate process migration.

Most of the tools available in GNU/Linux distributions are clones of the original Unix

tools, or new software developed from scratch to make a functional desktop and server.

However, neither the Linux kernel nor the userspace of GNU/Linux is designed with grid

extensions in mind. There are a number of kernel-related projects which provide check-

pointing and facilities for process migration such as MOSIX [3], but have not been fully

developed for the purpose of internet-based migration for grid computing. MOSIX assumes

a persistent, reliable and high-bandwidth network connection is available between hosts in

the distributed system, an assumption which we can not make for internet migration.

Most grid software such as Globus [21] or Condor [46] have GNU/Linux versions, but

few projects attempt to fully integrate the userspace tools with added functionality in the

operating system. Moreover, most distributed operating system projects were initiated

before grids became popular, thus there is little e�ort to support grid computing in re-

search distributed operating systems. However, the Plan 9 [53] operating system is quite

well-suited to grid computing, because of it's unique resource abstraction mechanism that

presents everything on the system as network accessible �les, even CPUs and other devices.

However, Plan 9 does not support process migration or dynamic load sharing. Also, the

problem with using research operating systems is that there is very little hardware and

software support for them (most do not implement the full feature set of modern Unix-

like systems), and all applications that want to take advantage of the system must be at

least recompiled, if not rewritten (plus there is inertia when users need to switch operating

systems).

Therefore, our motivation in choosing GNU/Linux as our vessel for investigating the

issues surrounding distributed process management, wide-area process migration, and grid

4

operating system design is because of the following:

1. Non-restrictive licensing terms for copying, modifying and redistributing the system.

2. Customisable open source kernel, and userspace software.

3. A wide range of free developer tools plus support for almost all major programming

languages.

4. Very popular and supports a wide range of hardware device drivers.

5. Popular computational, scienti�c and grid software is available for it. These existing

tools could bene�t from additional grid-speci�c improvements.

6. It is evolving rapidly. Every few months, a new Linux kernel is released, with more

feature added with each release. This rapid development process gives ample oppor-

tunity for new functionality to be included into a popular operating system (at least,

gradually). This helps overcome the inertia of organisations and users refusing to

totally change their operating systems, a problem described by the Legion team in

Grimshaw et al. [26].

While GNU/Linux has been used extensively in grid computing, it was not designed as

a grid operating system from the ground up. Padala [58] has proposed some enhancements

to the network stack to the Linux kernel for improving network performance for grid

applications. However, there have yet been no attempts to add on grid functionality to to

GNU/Linux at a more fundamental operating system design level. Our research explores

the idea of what a grid OS should look like, and proposes the design of a system for

distributed process management as an enhancement to the GNU/Linux operating system.

5

1.2.3 Reducing Cruft

The New Hacker's Dictionary [63] de�nes �cruft� as excess, super�uous junk; used especially

of redundant or superseded code. Crufty software is software with a design that's overly

(and perhaps unnecessarily) complex. The design philosophy of the Globus toolkit is

to work at a middleware layer, using only internet protocols. The justi�cation for this

decision as presented in [23] is to enable Globus to work on heterogeneous architectures

and operating systems, and that �traditional transparencies are unobtainable� for grids.

However the introduction of various new APIs in each of the components of Globus also

increases the complexity of utilising a grid.

We disagree with Foster and Kesselman that trading o� transparency and simplicity

for heterogeneity is a necessary compromise in creating a grid. In Gabriel's essay on the

design of Lisp [24], he characterises two software design strategies, one called �The MIT

Approach� and another called �Worse-Is-Better�. Both approaches stress the simplicity of

design, where the �MIT Approach� would try and do the �right thing�, where simplicity

of the interface is more important than the simplicity of the implementation, whereas the

�Worse-Is-Better� philosophy it is the other way around. The Globus toolkit however is

both complex in terms of interface and implementation, which is in sharp disagreement

with both software design philosophies. The simplicity of the design philosophy of Unix

in�uenced the proposal of the implementation of a grid operating system in this thesis.

We also assert that it is possible to provide extra transparency via operating systems

modi�cations while maintaining the same amount of support for heterogeneous platforms as

Globus does now. Since operating system extensions are mostly transparent to userspace,

it is possible for toolkits such as Globus to make use of the underlying grid features when

available and still achieve its goals. The advantage of operating system support for grid

6

functionality however, is that given a su�ciently large collection of computers of the same

architecture, it is possible to create a grid without complex middleware toolkits. Consider-

ing that the Intel x86 architecture continues to be the most prevalent computing platform,

plus the growing popularity of the GNU/Linux operating system, it is not inconceivable

that a computational grid of reasonable size and usefulness can be constructed with rela-

tively homogeneous hardware.

1.2.4 Enabling Internet Computing

There exists a vast pool of computing resources worldwide, and the advent of fast internet

technologies have enabled organisations willing to share their computing facilities to do so

at an unprecedented level. Currently, projects such as SETI@Home [1] and Folding@Home

[68] create a high-throughput computational environment via specialised programs to per-

form their tasks. We hope that with a grid operating system, it will be possible to easily

create generic programs that work like SETI@home and Folding@Home.

1.3 Research Objectives

1.3.1 Integrating Process Checkpointing And Grid Process Scheduling

Into The Linux Kernel

Currently, the Linux kernel does not support process checkpointing, a feature necessary

for process migration to work. Therefore, we will port and update the EPCKPT [61]

checkpointing patch into the Linux kernel 2.4.22. We will also tweak the default kernel

process scheduler to better handle CPU-intensive processes by enforcing a policy that

favours long-running processes and by allowing userspace to have better control over process

priorities. This will allow us the necessary functionality to create a foundation for our

process migration and grid process management research.

7

1.3.2 Creating A Prototype Grid Process Management System

With the necessary modi�cations to the Linux kernel, we will thus build a proof-of-concept

grid process management software in userspace called Zinc. It will incorporate a userspace

scheduler, monitoring daemons and command line tools for the user to submit jobs. The

design goals for the system are as follows:

1. Transparency � the user must be able to submit regular programs as jobs in the grid

without modi�cation

2. High throughput � the system will try to accomplish the most amount of work for

as long as it runs

3. Adaptability to dynamic resources � the system will adapt to the variable conditions

of the grid

4. Decentralisation � the system must re�ect the decentralised nature of the grid

5. Minimising residual dependencies � the system must try to minimise the residual

dependencies of a process when migrating it

With this prototype system, we will have a controlled environment that will enable us to

perform further experiments on throughput in a grid operating system.

1.3.3 Enabling Wide-Area Process Migration

For the paradigm of �grid processes� to be complete, we must allow processes to migrate

around the grid to any node connected to the system. This requires that processes be able

to migrate over wide areas, as the grid is a large-scale distributed system that may even

span continents. Therefore, we will determine whether grid process migration is feasible

8

over a wide area by conducting an experiment to see the time required to migrate grid

processes over the internet across continents.

1.3.4 Investigating The Factors In�uencing Throughput In The Grid OS

We are interested in the question of whether or not preemptive process migration will help

job throughput in the grid operating system, and also the factors that in�uence throughput.

Since grid operating systems are still in their infancy, we will use the prototype that we

develop to conduct our experiments, as we will be able to control external factors while

implementing only the features that we need.

1.4 Scope Of Research

In de�ning the extensions to operating systems (in this case, Linux) for grid computing,

substantial changes need to be done to all the subsystems of the OS. However, for the

purpose of this thesis, we will restrict the scope of the implementation to distributed pro-

cess management and process migration on the grid for the purpose of experimentation

and implementation of a prototype kernel. Thus, grid �lesystems, I/O, distributed device

management, and distributed memory management was not implemented. These topics

however, are discussed brie�y in the last chapter. The implementation of process migra-

tion assumes the processes will not be performing inter-process communication. Thus the

processes are "atomic" and may move about freely independent of other processes. The

last chapter also discusses a scenario where IPC is allowed between processes and how

wide-area process migration may take place in such a situation.

In the implementation of the Zinc grid process management framework, our goal is

to create a proof-of-concept system to provide for us a controlled experimental test-bed

9

to test the feasibility of wide-area process migration and to investigate the factors that

in�uence throughput in the grid OS. Therefore, no benchmarking will be done to compare

Zinc with existing similar systems such as Condor or MOSIX, as the latter projects have

di�erent design goals, thus a meaningful benchmark is not possible without compromising

our own goals.

1.5 Contributions

This thesis explores the outcomes of adding explicit features to support grid computing into

the Linux operating system. The primary contribution of this research is the introduction

of the concept of grid process management and global process migration via the internet

to GNU/Linux. Grid process management is a subset of the functionality required for a

grid operating system, and is the subset that was chosen as a focus for this thesis. The

design issues with Linux that need to be addressed when extending the operating system

for grid process management were identi�ed. The goal of the grid process management

implementation is to provide transparent, wide-area process migration and a means to

manage the aforementioned processes. To this end the EPCKPT [61] checkpointing patch

available on the internet was applied to the Linux kernel as a foundation for the distributed

process management algorithms.

A two-level scheduling system was designed for the grid operating system which consists

of a modi�ed kernel scheduler which was produced in collaboration with Linux kernel

developers [32], and a userspace distributed process scheduler which was implemented in

a program called Zinc. Zinc is a prototype proof-of-concept implementation of resource

discovery, process scheduling and execution monitoring software that takes advantage of

the checkpointing mechanism and the kernel scheduler in the modi�ed Linux kernel.

10

Within the Zinc userspace scheduler, an algorithm called Zinctask was introduced for

placement of jobs on a distributed system which makes decisions based on state information

collected from all nodes in the system. This algorithm improves upon placement algorithms

based on run queue length alone [19] by adding information on full distributed state via

the Name Dropper resource discovery algorithm. The Zinctask algorithm also takes into

account the staleness of state information when making decisions, as well as memory and

CPU loads of the system. Zinctask is evaluated against random placement of processes

and is found to be superior to it in almost all scenarios in the grid test-bed used for the

experiments. Together with Zinctask and process migration, the Zinc-enabled Linux-based

grid operating system yields both high throughput and creates an e�cient load-distribution

system.

Finally, with the implemented prototype systems and grid test-bed, the factors in�u-

encing the throughput of grid computing jobs were studied. The factors of interest are:

1. The availability of preemptive processes migration.

2. The placement strategy of processes.

3. The con�guration of the machines in the grid.

4. The length of the majority of jobs that are submitted to the grid.

It was discovered that the di�erent interactions between these factors in�uence through-

put on the grid test-bed, and certain combination of factors produce di�erent levels of

throughput.

11

1.6 Summary And Organisation Of Thesis

This research aims to bridge the gap between existing grid middleware and operating

systems development both of which are currently not integrating in a way to provide

transparency to the user. Our goal of unifying these domains is presented in �gure 1.1.

Figure 1.1: The Uni�cation Of Operating Systems And Grid Computing

The rest of this thesis is organised as follows. Chapter 2 presents a survey and discussion

of existing research related to our own. Chapter 3 gives a brief look at the design goals we

have with our Zinc system, whereas the details of the design is found in Chapter 4. Chapter

5 describes the implementation of all the components of Zinc in depth. The experiments

12

we carried out with our system and grid test-bed is presented in Chapter 6, together with

the results and discussion. Chapter 7 provides a conclusion and summary of the research

plus suggestions for future work.

13

CHAPTER 2

RELATED WORK

2.1 Introduction

In this chapter, we discuss the literature on existing work that is relevant to our research.

Firstly, the properties of the grid environment is discussed in section 2.2. Then, in section

2.3 we try and de�ne what a grid operating system is based on previous de�nitions of exist-

ing operating systems. Section 2.4 discusses an e�cient resource discovery algorithm that

we use for Zinc. Section 2.5 presents de�nition of grid scheduling while section 2.6 discusses

distributed scheduling algorithms design choices. Next, section 2.7 surveys process migra-

tion techniques while section 2.8 discusses some existing systems which implement process

migration in di�erent ways. The emerging �eld of grid operating systems are discussed in

2.9 while a summary of the chapter is provided in 2.10.

2.2 The Grid Environment

In general, the computational grid comprises the following:

1. A set of resources which are shared to the users of the grid. Resources can mean any

computational infrastructure, such as hardware like CPU, RAM, disk space, network

bandwidth and software like databases, shared libraries and compilers.

2. Middleware to facilitate the coordinated sharing of all these resources to all the

users. Grid software will automate the authentication of users, allocation of resources,

14

execution and monitoring of jobs, maintain the quality-of-service, throughput, and

security of the entire system.

Grid computing shares some similarities with cluster computing. They both take advan-

tage of the abundance of cheap hardware, and to some extent perform complex computa-

tional tasks in a collaborative manner between the di�erent processing elements. However,

there are a few di�erences between the two technologies:

1. Clusters are tightly coupled, with processing elements consisting of individual com-

puters connected to each other via a high-speed networking interconnect such as fast

Ethernet, Gigabit Ethernet or a specialised interconnect technology such as Myrinet.

Grids are usually built on a bigger scale, encompassing distributed systems networked

over wide distances such as LANs, WANs and the internet. The individual processing

elements of a grid can be individual computers, mainframes or entire clusters.

2. Clusters are centrally administered, and its processing elements are physically located

close to each other, usually in the same room. For grids, each processing element

may be independently administered by di�erent parties, and each component that

comprises the grid may be located at geographically distant locations.

3. Clusters usually consist of homogeneous processing elements. Each node in a cluster

(with perhaps the exception of the master node) have identical architecture, the

same hardware and software con�gurations and usually cluster administrators try

to set up a single system image with their clusters. Grids are usually comprised

of di�erent types of computers, storage devices, instruments and other networked

gadgets, creating a heterogeneous computing environment for each of these machines

and devices will have its own architecture, operating system, system libraries, and

other features unique to each machine or device.

15

With these di�erences, there come certain implications that make software and al-

gorithms suited for cluster-type operation unusable or ine�cient on grid systems. The

following factors have to be taken into account when constructing grid software:

1. The bandwidth and low latency readily available for cluster communication is not

guaranteed on a grid. The more widely distributed the components on the grid, the

more prone it is to su�er from bandwidth congestion, high latency and lag times,

and other undesirable e�ects of wide area networking.

2. The possibility that processes and jobs may be shared by di�erent computing fa-

cilities that are separately administered creates a problem of security. How will

systems administrators authenticate and set permissions for tasks that do not orig-

inate from within their administrative control? How is trust established between

di�erent administrative domains? Di�erent administrative domains also mean there

is no guarantee of the immediate availability of resources, since one administrator

has no control over the equipment administered by another party. Furthermore, if

there is a hardware or software failure at a di�erent administrative domain, there is

nothing the local administrator or grid software can do to correct it. Unlike centrally

administered cluster software, a designer of grid software must take all these issues

into consideration.

3. The issue of heterogeneous architectures is the most problematic when designing grid

software. Usually, programs compiled for a speci�c architecture cannot be run under

normal circumstances on a di�erent architecture. Even if the architectures are iden-

tical, it is seldom possible to run programs which are compiled for di�erent families

of operating systems such as Microsoft Windows and GNU/Linux. To get around

this, users of heterogeneous systems standardise on a single portable bytecode-based

programming language such as Java, Perl or Python.

16

These three points are an indication of a need for di�erent approach to distributed com-

puting when thinking about grids. The software and algorithms used for clusters cannot

be totally reapplied without consideration for the preceding issues.

Most grid computing middleware is implemented as userspace daemons, libraries and

programs. For example, Globus [21] is a collection of services that comprises a resource

manager called GRAM (Globus Resource Allocation Manager), a communication library

called Nexus, a directory service for state information called MDS (Metacomputing Di-

rectory Service), a remote data access service called GASS (Global Access To Secondary

Storage), a monitoring tool called HBM (Heartbeat Monitor), a security and authentica-

tion framework called GSI (Globus Security Infrastructure) and an executable programs

management service called GEM (Globus Executable Management).

Of each of these services, almost all of them introduce a set of APIs for the programmer

to use when designing grid programs. The disadvantage of this approach is the introduction

of complexity and cruft, especially for the user who needs to create new programs designed

speci�cally for the grid, as well as users who wish to run their existing applications on

the new grid environment. Furthermore, grid software currently available runs on top of

existing operating systems that are completely unaware of the existence of grid users and

grid processes that are executing on top of it. Therefore, the process management of the OS

cannot schedule or handle these grid tasks in a way that would bene�t the grid application.

The emergence of these grid applications has created unique new requirements for process

management, which most mainstream operating systems have no support for.

17

2.3 Operating Systems Support For Grid Computing

To argue the case for speci�c support for grid computing in operating systems, we shall

brie�y consider the di�erent kinds of traditional operating systems and their di�erent levels

of support for networking and distributed resource sharing. Then we will identify another

subclass of operating system which complements existing types of operating systems; the

grid operating system.

2.3.1 The Centralised/Local Operating System

The centralised/local operating system represent a class of operating systems without net-

work support and were common in the earlier days of computers before networking became

popular. They can be single user or multiuser, but lack a network stack to communicate

with other computers. The early versions of Unix were entirely centralised and local oper-

ating systems. A local operating system generally implements the four basic components

of operating systems : �le management, device management, memory management and

process management.

2.3.2 The Network Operating System

The network operating system is an OS which implements a network stack, and implements

several network services such as remote �le or print servers. All modern operating systems

such as Windows NT and Unix have networking functionality, and thus qualify as network

operating systems. Unix and Unix-like operating systems like GNU/Linux usually come

with many networking protocols, but the most popular of protocols in the Internet era is

TCP/IP. Unix-like systems implement TCP sockets as an extension of the �le and device

management components; every network connection socket can be treated as a �le to which

we can read and write from.

18

The network operating system grew out of local operating systems which were given

networking support. Therefore, they are generally not designed for running on a collection

of computing elements which act as a cohesive whole. A distributed operating system is

an OS for multiprocessing and multicomputing environments and is run as a single system

image.Tanenbaum and van Renesse [75] outline several fundamental characteristics of the

network operating system as opposed to the distributed operating system:

1. Each computer is running its own private operating system.

2. Each user logs in on each computer individually without a single sign-on nor a single

system image which dynamically allocates CPU usage to the user from a pool of

available CPU's.

3. File placement on di�erent computers need to be managed manually; copying �les

from one machine to another requires manual network copy.

4. Very little fault tolerance; if some computers are out of commission, the users on

that computer cannot continue working.

2.3.3 The Distributed Operating System

The key distinguishing characteristic of a distributed operating system from the network

operating system is the transparency of its operation on multiple computers. The user

should be able to see the distributed operating system as a single system image, where

every computing resource is represented as part of a whole. The user should authenticate

and log in only once, be able to access �les on a local or remote machine anywhere in

the system, run a process on any CPU, and the failure of a single component should not

cripple the system. All resources, whether �les or CPUs, must be able to be accessed with

the same usage semantics regardless of the physical machine they reside on.

19

There have been several experimental distributed operating systems, such as Amoeba

[73], Sprite [57] and Plan 9 [60]. Sadly, they have not gained widespread acceptance

beyond the OS research community. Even so, modern network operating systems have

come a long way since early network operating systems were introduced, and many of the

distributed operating systems' features have been incorporated into them. Modern Unix-

like systems can be equipped with NIS [34] or LDAP-based ([84], [80]) single system sign-on

and authentication, and various distributed �lesystems have been introduced such as NFS

[65, 59] and Coda [66, 38]. Symmetric multiprocessor (SMP) and NUMA machines also

incorporate dynamic CPU allocation across multiple CPUs. The Linux operating system

supports all these technologies, and therefore is used on clustering and parallel processing

platforms. However, the support for automatic distributed process management and CPU

allocation outside of proprietary NUMA machines or SMP machines remains missing in

mainstream GNU/Linux distributions.

2.3.4 The Grid Operating System

The current de�nitions of "local operating systems" and "network operating systems" are

inadequate to describe an operating system with grid support. It might be convenient

to group grid-enabled operating systems together in the "distributed operating system"

category, but there are several aspects of grid computing which are not addressed by the

de�nition of a distributed operating system.

A distributed operating system implies a single administrative domain (where a single

party is responsible for controlling access, maintaining and granting permissions to users),

whereas a grid can encompass many di�erent administrative domains that want to pool

their selected resources together. This has two consequences:

20

1. A grid can be a very decentralised entity with di�erent authentication systems, dif-

ferent administrators and di�erent geographical locations. A decentralised system

de�ned by rules on the sharing of distributed computing resources is referred to as

a virtual organisation [23]. Thus, though there is a mutual agreement of the sharing

of a resource pool, not all resources belonging to each party are shared, and perhaps

not all the time as well.

2. A distributed operating system assumes that all resources on the system can be

allocated and scheduled with full authority. This is not the case in a grid resource

pool which may encompass di�erent administrative domains have their own allocation

schemes and access control mechanisms which can not be overridden by another

administrative domain. Hence, there is no central authority in grid systems.

According to Mirtchovski et. al [53], current operating systems such as Windows and

the Unix variants were designed predating the advent of networking and the internet.

Therefore, they are poorly suited for grid computing. Thus, a need for a grid operating

system is a real one. Just as traditional operating systems simpli�ed the usage of com-

plicated assorted hardware resources by creating abstractions for them which a user can

use transparently and easily, it is hoped grid operating systems will do the same for the

eclectic mix of distributed resources on the grid.

2.4 Resource Discovery

The �rst step in the utilisation of the grid is resource discovery. In a fully decentralised

distributed network, the task of querying a global state is done by �rst determining the

existence of other nodes in the network. The process of each node on the network discov-

ering other nodes that want to cooperate with it for distributed processing is the solution

21

to what is known as the resource discovery problem. The system can be represented as a

directed graph, where each vertex represents a node. A directed edge from node A to node

B represents that node A knows about node B and B is said to be A's neighbour.

The resource discovery problem was described by Harchol-Balter et al. [29] in 1999. The

model for resource discovery proposed had the nodes in the distributed system partaking

in a series scheduling events at synchronous intervals of unspeci�ed length called �rounds�.

In each round, each node would send a list of its neighbours in to other nodes, and a node

receiving a list of neighbours would be able to create connections to new nodes previously

unknown to it and add the new nodes as neighbours. After a certain number of rounds,

the graph would be fully connected (all nodes know about every other node).

It is important that a robust resource discovery algorithm is used to give each node

a picture of the global state of a distributed system. This information must be kept as

current and as accurate as possible for each node. However, this must not be done at

the expense of �ooding the network, sending too many messages, or taking too long to

complete. Harchol-Balter et al. outlined three metrics for evaluating the performance of

resource discovery algorithms:

1. The number of rounds taken for the graph to reach full connectivity.

2. Pointer communication complexity � the number of �pointers� that is communicated

during the course of the algorithm.

3. Connection communication complexity � the number of connections that are made

during the course of the algorithm.

The Name Dropper algorithm was proposed by Harchol-Balter et al. in the same

22

paper. It works as follows; consider a node v, where Γ(v) is a set of all nodes which v

knows about (the set of neighbours). In each round, each node v transmits Γ(v) to one

randomly chosen node u where u ⊂ Γ(v). Upon receiving Γ(v), node u will update its

own neighbour list Γ(u) with new information from v, i.e. Γ(u)← Γ(u)∪Γ(v). The graph

will achieve complete connectivity very quickly in O(log2n)) rounds with high probability,

whereas pointer communication complexity is O(n2log2n) and connection communication

complexity is O(nlog2n).

Name Dropper is similar to gossiping [30] algorithms which is used to broadcast infor-

mation to a set of nodes. However, unlike gossiping, Name Dropper does not require each

node to know about every other node in advance, nor does it require a �xed communications

network.

Zinc uses Name Dropper to propagate resource discovery and state information updates

across administrative domains. Due to its e�ciency and simple implementation, Name

Dropper performs very e�ciently for fast information propagation.

2.5 Grid Scheduling Stages

According to Schopf, the scheduling of a job will go through the following stages in the

grid[67]:

1. Resource discovery

� Authorisation �ltering � Restricting the search for resources that are only au-

thorised to be used by the user.

� Application de�nition � De�ning the requirements of the user's job to select the

appropriate resources

23

� Minimum requirements �ltering � Eliminating the resources that do not meet

the minimum requirements criteria from the set of resources to choose from.

2. System selection

� Information gathering � Collecting state information from the grid, which is

mainly derived from a Grid Information Service (GIS) and the local scheduler.

� System selection � Deciding which system matches up with the requirements

for the application. Examples of approaches for this are Condor Classads[62],

multi-criteria [42, 41] and meta-heuristics [50].

3. Job execution

� Advanced reservation � An optional step, users may opt to reserve resources in

advance.

� Job Submission � The user submits the job to the system. Currently there is no

standardised way of doing this in the di�erent grid middleware implementations.

� Preparation tasks � Ensuring the �les needed are in place, claiming a reservation,

or whatever �preparation� steps needed to run the job.

� Monitoring progress� Enabling the user to track the status of his or her job

� Job completion � When the job is completed, the user is noti�ed.

� Clean-up tasks � Removing temporary �les, retrieving data �les, resetting con-

�gurations or other miscellaneous �clean-up� procedures.

Note that though Schopf calls the �rst stage �resource discovery�, the sub-stages listed

are have more to do with user authentication and user requirements collection than the

actual �discovery� of distributed resources as described by Harchol-Balter in [29], which is

categorised by Schopf into a subset of �system selection�.

24

With the Zinc program we have not attempted to implement the full functionality as

described above, but instead a subset of the essentials to provide a prototype to make grid

scheduling work on our extended Linux kernel. In particular, users do not need to specify

their requirements, thus there is no explicit requirements matching done. This is to keep

our prototype simple enough to test the e�ectiveness of process migration and the Zinctask

system selection algorithm.

2.6 Distributed Scheduling Algorithms

Figure 2.1: Casavant and Kuhl's Taxonomy of Task Scheduling

Casavant and Kuhl [9] devised a generalised taxonomy for the classi�cation of task

scheduling in distributed systems (reproduced in �gure 2.1), which we have applied to our

investigation of a suitable scheduling policy and mechanism for a grid operating system.

Casavant and Kuhl distinctly de�ne local and global schedulers as two separate logical

entities in their taxonomy. We have highlighted the characteristics of the Zinc scheduler

in bold, and is discussed in the following subsections.

25

2.6.1 Local and Global Scheduling

Local scheduling is the operating system scheduler responsible for the timesharing of the

CPU (or CPUs) within a single computational node, whereas global scheduling refers to

the placement of jobs or processes on the distributed system. A grid operating system

addresses issues in both type of schedulers, as the OS kernel should be aware of �grid

processes� (i.e. processes that are started by grid users and may migrate to other nodes)

and how to manage them even at the �ne-grained CPU scheduler level. The placement

of jobs on distributed nodes can be handled in userspace, but the userspace scheduler

should interact with the local CPU scheduler to handle grid scheduling across the system.

This two-level hierarchy may be viewed as a distributed variant of two-level scheduling

as described by Tanenbaum and Woodhull in [77], with a di�erence; instead of moving

processes around from disk and main memory, the top-level scheduler migrates them to

other nodes. In the Zinc-enabled version of GNU/Linux, the kernel scheduler uses a high-

throughput process scheduling algorithm [32] and process migration is controlled by the

top-level distributed userspace scheduler. The top level userspace scheduler interacts with

the CPU scheduler by setting priority values for grid processes in the kernel to re�ect

administrative domain policies.

2.6.2 Static Vs. Dynamic

Static scheduling is the formulation of a scheduling strategy for the system with information

regarding all the processes that are going to be run in the system as well as the system state

being known a priori, or before the execution even begins. Dynamic scheduling does not

assume any such information is available, and instead processes are managed as they begin

executing, which allows us to have a more realistic assumption about the information we

have when we start executing programs. Local schedulers for modern operating systems

26

such as GNU/Linux use dynamic scheduling, and thus our model of the grid operating

system also uses a dynamic local scheduler. Thus, we adopt a dynamic scheduling strategy

for our grid operating system at both the local and global levels.

2.6.3 Centralised Vs. Distributed

A centralised or non-distributed scheduling mechanism refers to a central authority which

ultimately decides scheduling decisions for the distributed system, whereas a distributed

one does not rely on single authority but is decided collectively by a number of di�erent

decentralised scheduling authorities. For Zinc, we have adopted both strategies; for a sin-

gle administrative domain, the strategy is centralised, but between administrative domains

distributed scheduling takes place. This re�ects the nature of grid administrative domain

authority; within an administrative domain, a centralised policy can be enforced for all

nodes, but between administrative domains on the grid, there exists no central authority.

Dandamudi and Lo [12] found the performance of this hierarchical scheduling scheme in-

herits the advantages of both centralised and distributed systems while minimising their

drawbacks.

2.6.4 Cooperative Vs. Non-cooperative

For distributed dynamic global scheduling policies, the strategy can be either cooperative

(every scheduling entity works for a single goal) or non-cooperative (each scheduling en-

tity makes decisions for its own resources with full autonomy). For scheduling between

administrative domains in Zinc, we chose the non-cooperative model, as it too re�ects the

nature of the grid of limited, controlled sharing of resources. Therefore, there is no explicit

"global goal" of grid schedulers, only the fact that they may agree to work together by

making requests for resources across each domain. The requests are only granted if it is

27

convenient for the administrative domain owner (i.e., it's not too overloaded).

2.6.5 Source-initiative Vs. Server-initiative

This classi�cation scheme is not explicit shown in Casavant and Kuhls' taxonomy, but

is suggested as a narrower, speci�c classi�cation of load-sharing. The distinction between

source-initiative and server-initiative algorithms was proposed by Wang and Morris in [82].

This classi�cation determines who takes the initiative in load-sharing. A source-initiative

strategy is when the source node searches for a suitable host to send a job. The server-

initiative however, actively �looks for work� by selecting jobs from di�erent sources which

it is willing to process. Wang and Morris conclude that load sharing algorithms are an

important design decision, for they found wildly varying performance with di�erent strate-

gies. Also, server-initiative algorithms potentially outperforms the source-initiative one

when given the equivalent amount of state information. However, performance (measured

by Wang and Morris with a metric called �Q-factor� which is a function of mean response

time) is sensitive to the amount of communications overhead, the number of servers and

the number of sources. Furthermore, while Wang and Morris' observations hold true for

non-preemptive scheduling algorithms, Dandamudi [11] found the source-initiative strategy

to provide better performance for preemptive round-robin algorithms. Other researchers

have also found that source-initiative algorithms potentially perform better than server-

initiated ones [70, 87]. For Zinc, one of our design goals is to minimise the amount of

migration that needs to take place. We also use preemptive round-robin scheduling in-

stead of a FCFS queue. Therefore, processes will not be migrated if there is no need for

that to occur. Hence, we chose the source-initiative algorithm.

28

2.7 Process Checkpointing And Migration

2.7.1 Checkpointing Techniques

There have been several implementations of process checkpointing mechanisms, and they

can be classi�ed into either kernel-level checkpointing or user-level checkpointing schemes.

User-level checkpointing implementations usually requite that the application be built with

checkpointing in mind. This is done in 3 ways:

1. Compiler-assisted � The user manually speci�es points in the source code where

checkpointing can take place, and the compiler produces a binary which is check-

pointable in userspace.

2. Checkpointing library � The user program is linked to a special userspace library

which enables checkpointing, thus does not require a special compiler.

3. Runtime-assisted � The programming language run-time system (for languages that

have one) transparently supports checkpointing.

Kernel implementations of checkpointing and migration mechanisms usually provide

a more transparent facility for users. This is because a lot of process state is stored in

kernel data structures, and thus having the cooperation of the kernel simpli�es dumping

and restoring this state information. Kernel implementations of checkpointing is usually

a straightforward dump of the contents of the process state and virtual memory map

into a �le. Restoring a checkpoint involves reading the dump �le and setting up the

virtual memory areas again, while resetting the registers and kernel data structures. Unlike

userspace checkpointing which requires tricks to make the kernel start a program half-way,

restoring a program in kernelspace is easier to do since we can manipulate kernel data

structures directly.

29

2.7.2 Process Migration Overview

Process migration is �the act of transferring a process (in execution) between two machines�

[51]. Checkpointing is de�ned as �a technique for saving process state during normal

execution and restoring the saved state after a failure to reduce the amount of lost work�

[81]. Checkpointing and migration often go together as checkpointing can be used to help

implement the process migration mechanism.

Checkpointing and migration have traditionally been used to implement load balanc-

ing in a distributed system. As computational grids become more common, the need for a

transparent checkpointing and migration facility arises as jobs submitted to the grid need

to be organised and possibly redistributed across the computational grid for maximum e�-

ciency and throughput. This calls for processes to be migrated in the middle of execution,

or preemptive migration.

2.7.3 Motivation For Process Migration

An excellent survey on process migration has been done by Miloji£i�c et al. [51] in which

the subject of process migration was discussed in detail, along with a discussion on many

di�erent process migration systems already implemented. Miloji£i�c outlines six major goals

of process migration:

1. Accessing more processing power � mainly used for load distribution and load bal-

ancing.

2. Exploitation of resource locality � moves processes closer to the resources they need

for faster access.

3. Resource sharing �moves processes that need special hardware or software to the

30

place that has it.

4. Fault resilience � processes can be migrated from a failing node to another node, and

checkpointing can also act as a failsafe mechanism in the case of sudden shutdown.

5. System administration � system administrators can move important processes from

a machine that needs maintenance.

6. Mobile computing � users may want to migrate a process from a remote location to

their computer at another location and migrate it back when they're done.

All these goals are also desirable in a grid computing environment which would also ben-

e�t from process migration and checkpointing in the management of distributed processes

and jobs. It would be very helpful if a long running job could be automatically check-

pointed for recovery in case of failure. It is also e�cient to migrate compute intensive jobs

to more powerful computers as they become available. Grid computing usually involves

the execution of long-running computational processes. Applications such as molecular

modelling, DNA and protein analysis, mathematical algorithms and other scienti�c appli-

cations which are the target usage of grid technologies usually run for hours or days, even

on modern hardware. Therefore, it would be advantageous if the execution state of these

applications could be captured and saved to disk, either for backup purposes (so that work

won't be lost if there is node failure) or for process migration. Furthermore, in a grid envi-

ronment, availability of resources is not always guaranteed, so the grid scheduling system

needs a some way of performing preemptive process management in an always-changing

computing environment for the sake of e�ciency and maximising throughput.

Despite the bene�ts, there are also drawbacks to process migration:

1. Perhaps the biggest drawback is cost of migrating large process images can be high.

31

A checkpoint image with a virtual memory size of 1 gigabyte or more will be very

costly to migrate. However, the continual improvement of network hardware which

currently cheaply provide gigabit speeds may improve the situation. If the migration

times can be brought to reasonable time, it may still bene�cial to migrate long-

running jobs that take magnitudes longer than the transfer of its checkpoint im-

age, for reasons of load balancing and maximising throughput. Zinc addresses this

problem by preferring processes with smaller virtual memory sizes when choosing

processes to migrate, and automatically disregarding remote hosts with insu�cient

bandwidth.

2. Process migration is also di�cult to implement correctly while using all the fea-

tures of modern operating systems such as sockets, pipes and shared memory. Single

administrative domain migration systems such as Condor and MOSIX provide inter-

process communication support via home nodes that support the execution of remote

processes. However, for wide-area grid migration, home nodes which require a per-

sistent network connection are troublesome to maintain over the internet where high

lag times may impede performance of the process. Thus, we have assumed pro-

cesses that are going to be run do not make use of inter-process communication, and

many numerical and scienti�c programs which the grid will be primarily used do not

need IPC or other advanced Unix facilities (Miloji£i�c et al. [52] support this view).

However, it is a weakness which needs to be addressed in the future.

Eager et al. [16] argue that there are no conditions where process migration would o�er

substantial performance improvements over non-preemptive strategies, and recommend

non-preemptive migration as a better strategy for load distribution, citing lower costs.

However, Harchol-Balter and Downey argued against this conclusion in [28], stating that

the theoretical model used by Eager et al. is �awed by taking into account processes with

32

zero lifetimes (which do not exist in the real world), do not recognise the costs involved

in initial placement of processes (non-preemptive migration), and assumes an exponential

process lifetime distribution, which does not re�ect the process lifetime distributions of

real systems. Harchol-Balter and Downey argue the following in favour of preemptive

migration:

1. Migrating long jobs away from busy hosts helps both the long job and other short

jobs that share the host, and a busy host is expected to get many short jobs.

2. Preemptive migration outperforms non-preemptive migration even when memory

transfer costs are high, because non-preemptive strategies need to predict which

processes will be long-lived. The cost of an incorrect prediction will cause other

processes on the node to slow down due to the long-running CPU hog that was

inappropriately assigned to the node. A preemptive migration strategy can correct

placement mistakes with migration.

3. Despite preemptive migration being di�cult to implement, some systems implement

it for reasons other than load balancing.

2.7.4 Migration Algorithms

Process migration is dependent on the ability to suspend the operation of a running process

and transfer its state to a remote machine and resume execution. According to some

researchers such as Eskicio§lu [17] and Zayas [85] , the size of the virtual memory or the

used process address space is the main determinant of the performance of the distributed

system. There are several methods of implementing virtual memory transfer, four of which

are outlined by Eskicio§lu:

33

1. Entire virtual memory transfer � The most straightforward scheme where the entire

process space is transferred to the destination machine. The process is suspended on

the source machine before the virtual memory image copying takes place, and only

when all the pages are transferred to the destination host, the process is resumed.

2. Pre-copying � The memory pages are evicted to the target machine while the process

is still executing on the source, and dirty pages are copied over as needed until a

threshold point when the number of dirty pages is at a minimum. Then the process

is suspended and the remainder of the pages are transferred, after which the process

resumes on the destination host.

3. Lazy copying/copy-on-reference � The process is suspended on the source and all

state information except the virtual memory is copied over to the target machine.

The process is resumed on the destination host and the pages are copied on demand

when each of them are accessed.

4. Enhanced copy-on-reference/�ush � Almost the same method as regular copy-on-

reference, the only di�erence is that dirty pages from the address space is copied to a

�le server after suspension before any part of the process is transferred to the target

machine. Then the remaining state information is sent to the destination host where

it is restarted, and the missing pages are copied on reference from the �le server.

Richmond and Hitchens [64] proposed another process migration algorithm similar to

the ones above called migration by post copy, where the process is suspended on the source

host, the minimum necessary state information is transferred to the destination host like

the lazy copying algorithm. However, the source host also simultaneously transfers the

rest of the virtual memory pages as the process starts to execute. If there any speci�c

pages which the execution process needs, they are requested by the destination node and

34

the source node also sends the requested pages as needed.

By it's very nature, process migration works only for homogeneous architectures. Ar-

bitrarily saving the process state of a program on one architecture and translating it into

another is a di�cult problem, but there have been e�orts to attempt to solve it. Usually

such solutions involve virtual machines which provide an identical environment on which

programs can run on, regardless of the host architecture. This is the approach taken with

Java process migration and mobile agents. Another approach is modifying the source

code of a program to accommodate checkpointing, and since checkpointing semantics is

supported at the source code abstraction and compiler level, di�erent architecture-speci�c

binaries can be generated from it. Such was the approach taken by Theimer and Hayes

[79], Strumpen and Ramkumar [71] and Ferrari et al. [18].

2.8 Systems Which Implement Process Migration

The following are examples of systems using process migration implemented in slightly

di�erent ways. While by no means is it an exhaustive survey, the following list highlights

various implementation techniques for process migration.

2.8.1 Condor : A Userspace Implementation

Condor[46] was developed at the University of Wisconsin-Madison to maximise the util-

isation of idle workstations on their campus, thus delivering a source of computational

cycles that was otherwise untapped. It's the idea of e�cient utilisation which led to high-

throughput computing [48, 49], which has the goal of sharing resources e�ectively on the

grid and doing as much work as possible with those shared resources. The purpose of pro-

cess migration in Condor is to provide workstation autonomy; a user who starts to use his

35

or her own workstation would want the CPU to himself or herself. Thus, guest processes

running on the machine need to be evicted and run elsewhere. Process migration in Condor

[47] is implemented in userspace. A custom C library with specialised system call wrappers

handles the process' interface with the operating system, hence allowing for process stubs

to be created and communicate with a remotely migrated process. In the actual creation

of the checkpoint, process state is extracted from a core image of a process, which the

kernel can be instructed to dump to a �le. From the core image, a custom a.out �le is

constructed by Condor which contains special instructions (speci�cally, a signal handler)

to trick the kernel into restoring a process' state.

2.8.2 Amoeba : A Microkernel Implementation

Amoeba[55, 73, 76] is a distributed operating system developed at Vrije Universiteit in

Amsterdam since 1981. Amoeba employs the concept of �processor pools�, where comput-

ers with high processing capabilities provide CPU time to users, who submit jobs from

terminals. Similarly, there are �le and directory servers which provide storage and other

facilities. It's radical design meant Amoeba was only partially compatible with existing op-

erating systems (i.e., Unix) and software had to be ported to it with some e�ort.Initially,

Amoeba did not have process migration, and it was added by retro�tting the Amoeba

kernel with the capability to suspend and transfer address space [70]. It is a microkernel-

based operating system, where the kernel maintains a very minimum of state information

on running processes, which simpli�es the design of the process migration algorithm as

not a lot of state needs to be transferred. Also, Amoeba is designed from the ground up

to be a distributed operating system. All inter-process communication takes place via re-

mote procedure calls, which themselves are implemented on top of a location-independent

networking protocol called FLIP [35]. This location-independence makes the transfer of

processes easy across nodes in an Amoeba system, as there is no need for explicit rerouting

36

of messages from a home node.

2.8.3 Sprite : A Monolithic Kernel Implementation

Like Amoeba, Sprite[57] was also designed from the ground up as a distributed operating

system. However, unlike Amoeba, Sprite tries as much as possible to resemble a traditional

Unix-like operating system to the user. Also, the Sprite kernel is of traditional monolithic

design, which is argued to have a simpler implementation and higher performance compared

to microkernels. Sprite incorporates process migration as a fundamental service which the

operating system provides[13]. Sprite uses a number of techniques to ensure transparent

migration:

1. Virtual memory images of processes are transferred via the enhanced copy-on-reference

algorithm.

2. Uses a combination of system call forwarding and kernel state transfer to ensure the

execution environment remains the same for the migrated process

For a comparison of Sprite and Amoeba, see [14].

2.8.4 MOSIX : Extending An Existing Unix-like Kernel

MOSIX [3] is a project that implements process migration on BSD and Linux, by adding

kernel modi�cations. MOSIX was initially intended to work on clusters, where a persistent

network connection is available to all nodes. MOSIX processes which migrate maintain

communication with a stub or �deputy� on the home node, and message forwarding is

done to between the home node and the remote node to maintain transparency. Like

Amoeba, MOSIX uses a �central pool of processors� model that assumes the nodes used

37

for computationally-intensive processing are dedicated to the job, and thus does not evict

processes for workstation autonomy. MOSIX continually tries and balance the load across

nodes in the system when it is running. MOSIX has recently been expanded to work on

clusters of clusters which resemble grids.

2.8.5 Xen : Virtual Machine Migration

The Xen [15] virtual machine (VM) monitor is an open source paravirtualisation tool which

allows virtualised instances of entire operating systems to run concurrently on the same

machine. The Xen virtual machine monitor allows the migration [10] of virtual machines

across physical machines, which e�ectively migrates the entire operating system together

with all the processes running on it. To evict the virtual memory pages of the running VM,

the pre-copy migration algorithm is used by Xen to migrate most of the pages and transfer

any dirty pages left over as they are accessed. When the migrated VM is restarted, the

VM at the original source is suspended and any leftover pages are copied over on reference.

This technique of migrating entire operating system instances has the bene�t of elimi-

nating nearly all residual dependencies between source and target machines. However, the

problem of IP address reassignment and large disk image transfer makes this method un-

suitable for wide area migration. Also, migrating all processes in a given operating system

instance is too coarse-grained for grid computing load distribution.

2.9 Grid Operating Systems

The concept of a grid operating system has not been explored much in literature. We are

only beginning to see facilities for grid computing integrated or retro�tted into existing

operating systems such as the MOSIX extensions for Linux and the Plan 9 distributed

38

operating system from Bell Labs.

2.9.1 Federated MOSIX Clusters

In 2005, the MOSIX research team published a paper on the use of MOSIX to construct a

grid of �federated MOSIX clusters�[4], which allows the use of MOSIX to migrate processes

within a grid. In this paper, grid-related problems such as resource discovery, precedence

(priority) order of guest and local processes and a virtual run-time environment was dis-

cussed. MOSIX now supports intra-cluster migration, but for a inter-campus grid with a

high-bandwidth network.

2.9.2 The Plan 9 Approach

Plan 9 from Bell Labs is a distributed operating system developed in the late 1980's at

Bell Labs, from the same development team that designed the original Unix. Plan 9 takes

the concepts of Unix and extends it several steps further, such as the �everything-is-a-

�le� philosophy in Unix, which in Plan 9 applies to almost all resources in the system.

These resources, whether they are local or remote, can be accessed uniformly through the

�lesystem namespace. Plan 9 was designed following the �resource pool� model which is

similar to Amoeba and MOSIX, though there is no support for load sharing or process

migration at the time of writing.

Mirthovski et al. [53] argue that the reason Plan 9 is an ideal operating system for

the construction of computational grids, for the basic mechanisms for resource sharing

is fundamentally built into the operating system with clean, simpli�ed abstractions for

accessing the resources:

1. Distributed authentication is possible with authentication agents and servers.

39

2. Private namespaces for processes maintain a virtualised environment which maintains

security.

3. Resource discovery is done simply by sharing namespaces where a view of remote

resources can be mounted as part of the �lesystem, thus allowing them to be inspected

using standard Unix tools such as cat and grep.

4. There is no need for explicit data management utilities, since the sharing of names-

paces allow the transfer of data across the distributed system which is done auto-

matically by the operating system.

It remains to be seen whether Plan 9 will gain greater acceptance by the grid computing

community. While it's innovative use of namespaces provide an interesting mechanisms for

resource discovery and data management, it still lacks mechanisms to control and distribute

system load.

With Zinc, we address the issue of providing distributed process management for

GNU/Linux, and in the future add the concepts of namespaces as pioneered by Plan 9

to make the system more complete.

2.10 Summary

The �eld of distributed computing has given birth to many ideas which can be applied (and

adapted) to the emerging new paradigm of grid computing and grid operating systems.

Resource discovery, distributed scheduling and process migration all come into play when

designing a process management facility for a grid operating system. In this thesis, we will

attempt to answer the question as to whether or not process migration is worth the cost of

implementing with respect to the goals of grid computing, one of which is high-throughput

40

computing. Based on the work of established by researchers in the �eld of distributed

computing, we have designed our algorithms to be e�cient and robust. The performance

of these algorithms have been tested experimentally, and are presented in chapter 6.

41

CHAPTER 3

DESIGN GOALS

3.1 Introduction

This chapter encompasses the design goals of the creation of Zinc, a software extension of

Linux to make it more "grid aware". Section 3.2 presents the overview of what the Zinc

framework tries to accomplish. Section 3.3 takes a look at the design goals of Zinc, and

section 3.4 presents details on the handling of wide area migration issues. Section 3.5 takes

a look at the performance metrics used to evaluate our system, followed by a conclusion

for the chapter in section 3.6.

3.2 Design Overview

3.2.1 Extending GNU/Linux To Become A Grid Operating System

The Linux kernel is a monolithic kernel by design, and to extend the functionality of

the operating system, one needs to be careful as side e�ects could break other subsystems.

Linux follows the general design of any modern operating system, comprising the following:

1. Filesystem management

2. Device and I/O management

3. Memory management

4. Process management

42

There are several other ways to break down the functionality of the Linux kernel, but for the

purpose of this thesis, we shall use the above generic taxonomy described by Nutt [56] to

illustrate the di�erent responsibilities of any modern operating system kernel. GNU/Linux

is a network operating system, with its userspace programs o�ering a myriad of network

services such web servers, ftp servers, mail servers and the majority of all the other net-

work services that are available to today. The kernel however remains largely a centralised

entity, although the most recent Linux kernel releases have forayed into distributed system

territory. The process, memory and device managers have supported symmetric mul-

tiprocessing since version 2.0, and the �lesystem manager supports various distributed

�lesystems such as NFS [65, 59] and Coda [66, 38] by default. The newest versions of the

kernel at the time of writing, the 2.6 series, has added support for NUMA architectures.

This taxonomy is also used by Goscinski [25] to illustrate how a distributed operating

system can be implemented by placing interprocess communications as a layer which ser-

vices any or all of the components of the distributed operating system. Hence, we can have

distributed �lesystems, distributed devices, distributed memory and distributed process

management. To what degree an operating system can be considered "distributed" de-

pends on how many of these basic components are supported in the distributed paradigm,

and how much integration is done between the components. A fully distributed operating

system will appear as a single-system image when running on multiple computing nodes,

where processes and users have transparent access to all resources on the system. However,

a GNU/Linux operating system only partially implements distributed functionality.

It is useful to consider the features of traditional distributing operating systems when

pondering the design of a grid operating system. One of the primary de�ning characteristic

of a grid is the ability to selectively share resources over a distributed network of computers.

The Zinc framework will only be implementing grid process management, as outlined by

43

the scope of the research in Chapter 1.

3.3 Goals

In the design of Zinc, the following factors were taken into consideration that support the

idea of a grid operating system:

1. Transparency

2. Improved throughput of jobs in the entire system

3. Adaptability to a varying resource pool

4. Minimal residual dependencies

5. Decentralisation

These points provide the motivation for the design decisions that were made for Zinc.

Each of these points are expanded on and explained in the following subsections.

3.3.1 Transparency

The goal of any operating system is to provide a layer of virtualisation on top of the hard-

ware, as to shield the user from having to deal with low-level details of the implementation

of services. Therefore, a grid operating system should provide transparent facilities for all

process execution activities that are related to its participation in the grid.

According to Tanenbaum and van Steen [74], in any distributed system there are several

concepts of transparency:

1. Access transparency � provides an abstraction for data structure representation

44

2. Location transparency � the location of a resource on a distribution system is ab-

stracted into a uni�ed view for the user

3. Migration transparency � a resource may be moved across physical locations on the

distributed system and can still work the same way

4. Relocation transparency � like migration transparency, but with the added require-

ment of being able to move a resource while it is in use

5. Replication transparency � multiple copies of the resource exist, but appears to the

user as a single copy

6. Concurrency transparency � access to a resource can be done by concurrently by

di�erent users without the users being aware of the sharing

7. Failure transparency � the user need not know or does not notice that a resource has

failed and has restored itself and corrected the failure

8. Persistence transparency � the user does not know whether a resource lies in primary

or secondary memory

Tanenbaum and van Steen also state that there are degrees of transparency on a dis-

tributed system. For Zinc, we have tried to provide a high degree of migration and relo-

cation transparency of processes and the �les the process works with. In particular, the

following mechanisms are done without user intervention:

1. Transparent process checkpointing

2. Transparent host selection

3. Transparent process migration

45

All of these are inter-related, before a process can be migrated, the process needs to be

halted and the state needs to be saved into a checkpoint image. Then, another host must

be found, and the checkpoint image needs to be sent to the target host for restarting.

The primary goal of a kernel-level process checkpoint and restore mechanism is to

provide near-total transparency of checkpointing. Although checkpointing is quite a well-

researched and widely available facility, most grid middleware do not come with check-

pointing mechanisms for the enabling of process migration. A notable exception to this

is Condor[47],which provides application level-checkpointing by relinking target applica-

tions with a custom C library. The C library would then make custom function calls that

redirect all input/output via stubs if the application running gets migrated away from its

home node. Although this is enough for most purposes, it makes a number of assumptions

about the application that is to be run:

1. It is dynamically linked

2. It uses a speci�c version of a C library

3. A persistent network connection is available between computing nodes

In the design of a general purpose computing environment, we feel it is not desirable to

restrict the developer of applications to a particular version of a function library, or to

introduce new APIs to the programmer. Therefore, checkpointing is best handled at the

kernel level, which does not require any speci�c linking provisions for the applications

in userspace to take advantage of the checkpointing capability. This is because all the

checkpointing logic can be encapsulated inside the kernel, with system calls being the only

method of invoking the checkpoint mechanism. This frees the programmer of having to

use speci�c libraries or specifying checkpoint points in the source code. This is the level of

46

abstraction that an operating system should provide for the user.

Once a program has been checkpointed, it can then be transported to another host for

restart. The process of host selection and the copying of the checkpoint image are done

in userspace, via the Zinc userspace scheduler. Therefore, the policy for process migration

can be set in userspace without touching kernel behaviour.

3.3.2 Improved Throughput

One of the goals of grid computing is to pool together distributed resources and make

the most e�cient use of this shared pool. This has led to the development of complex

scheduling and resource allocation mechanisms to handle job management on the grid.

There have been resource allocation policies based on expected running time [43], deadline-

based scheduling ([8], [72]), expected resource requirements of jobs [37] and also economy-

based resource management [7]. These di�erent strategies have di�erent emphasis when

dealing with the problem of resource allocation. Policies based on deadlines and running

times are mainly concerned with the time-constraint needs of the user, while economy-based

strategies take into account the monetary costs of using shared resources and try to optimise

the scheduling for cost-e�ectiveness. However, there is an emerging paradigm of resource

allocation that has grown in unison with grid technology, which is called high-throughput

computing or HTC. HTC-centric scheduling policies tend to try to optimise the utilisation

of pooled resources for all users, rather than to try and set hard-and-fast deadlines on

the time of completion of jobs. According to Livny and Raman[49], the characteristics

of HTC is that of opportunistic scheduling, where resources can be available at any time

without advance notice, and the system must be robust enough to schedule jobs to take

advantage of dynamic resource availability. The objective of this is to get as much work

done as possible in the grid environment, while honouring the priority of the owners of

47

the resources. Therefore, the design of Zinc follows this paradigm of resource allocation

though it de-emphasises the importance of workstation autonomy which is one of the

design goals of Condor. This is because we wish to create a distributed computing model

of dedicated networked grid computing machines and not merely �scavenge� for free CPU

cycles from desktop users. This model is based on the assumption that resource owners

are participating in the Zinc-powered grid with the speci�c intent of building a shared

computing infrastructure, and not relying on spare compute cycles from random users.

This design goal borrows from the design philosophy of Amoeba which has a dedicated

processor pool for sharing amongst users [14].

It is interesting to note that the emphasis on throughput does not make the scheduling

policy mutually exclusive with other scheduling policies. Since the notion of priority is ever

present in a HTC environment, it is possible to use priority as a weight when designing

scheduling functions. This weight can be used as a representation of urgency (a higher

priority can be assigned to a user who requires tasks to be completed soon) and also cost

(a higher priority can be assigned to users who are willing to pay more for better service).

However, Zinc was not designed to guarantee that jobs will complete by a certain deadline,

since the problem of accurately ascertaining the running time of a particular program is

di�cult if not impossible.

3.3.3 Adaptability To Dynamic Resources

A grid computing environment encompasses a scale which is unlike ordinary comput-

ing clusters or massively parallel processing machines (MPP's). Clusters and MPP's are

tightly-coupled, administered by a single entity, and the set of available resources is con-

trolled and of a constant number. Grids are more loosely-coupled, and perhaps spans many

administrative domains, and the number and quality of resources that are available vary

48

with time. A scheduling policy that works well on a multiprocessor or cluster system will

not work well at all on a grid. This is because scheduling on a tightly-coupled system

such as a cluster or a massively parallel processing machine is based on the assumptions

outlined by Berman[5]:

1. All resources are available at any time and can be scheduled accordingly

2. We have the authority to use every available resource

3. Inter-PE (processing element) communications are possible at any time with a pre-

dictable level of performance

4. The set of shared resources remains constant (unchanged)

5. There is minimal contention of resources among applications as all usage of the system

is under the control of a central policy.

In a grid computing environment, all of these assumptions break down. Therefore, a

scheduler for a grid environment has to be designed to take into account the following:

1. Resources may become available or unavailable at any time

2. Permission is required to schedule jobs across administrative domains

3. Direct communications may not be possible between all PE nodes, and when available

the latency is higher and bandwidth is lower than what is typically available on a

LAN or in a cluster.

4. The size of the resource pool can expand or contract

5. There are numerous applications all wanting to take advantage of the best resources.

Not all these resources are under control of a centralised scheduling policy, therefore

49

cooperation is required between schedulers at di�erent virtual organisations.

3.3.4 Decentralisation

Grids by their very nature are decentralised. Grids are formed by multiple parties cooperat-

ing together to share resources, but since these parties are also interested in autonomously

administrating their computing facilities there is no centralised authority that dictates how

this sharing should occur. Thus, sharing is based on mutual agreement, and each partic-

ipant has the freedom to decide what it wants to share, when they want to share it, and

how much of it they want to share [23].

Therefore, there is a need for decentralisation in the design of services that will be used

to construct a grid. Iamnitchi and Foster found that a decentralised and self-con�guring

architecture is a promising solution for dealing with a large collection of dynamic collection

of distributed resources [33]. Iamnitchi and Foster also noted the similarity between grids

and other decentralised computing systems such as peer-to-peer �le sharing [20]. The

main similarity of interest in their paper is that the decentralised nature of both types

of systems allow them to scale well over the internet with a large number of users. Peer-

to-peer systems have been developed as specialised solutions for speci�c resource sharing

problems (addressing anonymity, scalability and availability), and thus both technologies

may converge in the future.

3.3.5 Residual Dependencies

A residual dependency is process state information left on the home node that is still

required for the process to function correctly after it has migrated away to another host.

The implementation of distributed processes with the design goal of allowing as much

disconnected operation as possible means that residual dependencies must be minimised.

50

However, it is di�cult to eliminate them all. Residual dependencies occur in the form of

open socket connections and other IPC mechanisms, open �les, unused virtual memory

pages (for the pre-copying and copy-on-reference migration strategies), devices in use,

process identi�cation information and other things speci�c to di�erent operating systems.

Douglis and Ousterhout state that residual dependencies are undesirable because they

decrease reliability and performance while increasing the complexity of the distributed

system [13].

3.4 Wide Area Process Migration

Central to the development of Zinc is the migration of processes across a wide area network.

Unlike the migration of processes in Condor which occurs in a cluster or a LAN, wide area

process migration can occur between LAN's or across the internet. There are a number of

problems which arise from this kind of distributed computing to be done transparently, as

identi�ed by Homburg et al. [31] as follows:

1. A very large number of users and resources

2. Latency due to distances between nodes

3. Heterogeneity of underlying operating systems and architectures

4. Involvement of di�erent administrative domains

To handle process migration over a wide area network e�ectively, the distributed system

must be constructed to handle migration and process I/O despite the problems above.

When faced with a large number of resources, the system must be able to quickly identify

and select resources based on its quality. This resource selection algorithm must be scalable

51

enough to handle a large number of resources. This is handled by the scheduler and the

scheduling algorithms.

Perhaps the biggest obstacle for distributed computing is the latency of intercommuni-

cation between nodes because of the distance between them. The greater the distance, the

worse the latency becomes. Again, the scheduler has to be intelligent about migration and

placement, by avoiding or minimising I/O across high-latency links. A �lesystem which

allows for disconnected operations also helps in this respect. However, since the scope of

this research does not cover �lesystems or inter-process communication, Zinc assumes no

IPC takes place, and simpli�es �le access operations by simply packing the �les in use by

the checkpointed program together with the checkpoint.

As for heterogeneous systems, it is not reasonable to expect binaries to work unmodi�ed

across operating systems or architectures. There have been e�orts to create virtualisation

layers which allow for this, but for the purpose of this thesis we wish to migrate native

binaries, therefore the operating system and architecture must be adequately uniform, or

homogeneous. The architecture chosen is Intel IA32 (sometimes referred to as i386) and

the operating system is Linux. This does not hinder our goal of a distributed and widely

available network of computing, since these are very popular computing platforms.

The problem of migrating processes across administrative domains imply issues of prior-

ity and security. The owner of an administrative domain would not want a foreign process

to use too much CPU power or disk space when it is scarce, and the concern of malicious

foreign processes is always on the mind of a system administrator. There is also the issue of

data integrity on foreign nodes; what if data is corrupted or subverted on a remote node?

In the development of this system, certain assumptions were made to simplify the process

of inter-administrative domain cooperation and the security issues that it entails:

52

1. Cooperation between administrative domains is agreed on beforehand by the parties

involved. Two parties that have agreed to cooperate mutually trust each other.

2. Trust is commutative; if administrative domain A trusts domain B, and domain B

trusts domain C, then it is assumed domain A trusts domain C without the need for

an agreement.

3. All transfer of data and programs is encrypted via ssh.

4. All executing programs are run with a speci�ed Unix user and group ID for grid

computing purposes. This user and group ID do not have access permissions to

other parts of the system.

There are better methods of establishing trust and security (see section 7.5 on future work),

but these choices were made to be as simple as possible, for security is not the primary

focus of this work.

3.5 Performance Metrics

The performance metric when discussing distributed systems in literature has almost al-

ways been the mean response time of jobs [69]. Other metrics may include process wait

time (the amount of time a process spends waiting for resources) and wait ratio (wait time

per unit of service) [39]. However, one of the goals of grid computing is for gaining high

throughput when utilising available resources [49]. In this respect, it would be more useful

to look at system throughput instead of mean response time. The de�nition of throughput

varies from publication to publication, but generally the accepted meaning is a measure-

ment of the amount of work accomplished by a system in a certain amount of time. Thus,

our primary performance metric when assessing Zinc is system throughput. For the pur-

pose of our experiments, the throughput benchmark is the number of processes completed

53

by a particular administrative domain in one hour. The details on the experiments are

discussed in Chapter 6.

3.6 Summary

The process of adapting an existing operating system to support grid extensions requires

an overhaul of many of the major subsystems of the OS. However for our implementation

we have chosen to implement only the process management aspect. Our goals in this imple-

mentation of grid process management are transparency, minimising residual dependencies,

improved throughput, adaptability to changing resource availability and decentralisation.

When handling wide-area process migration, we have chosen not to implement inter-process

communication, and �le I/O is handled on the local �lesystem. When evaluating the sys-

tem, our chosen performance metric is throughput instead of mean response time.

54

CHAPTER 4

DESIGN DETAILS AND METHODOLOGY

4.1 Introduction

In this chapter, we discuss the system structure of Zinc and the design details of the

framework. In section 4.2 we take a look at how a Zinc system looks like. Section 4.3 is

on the information collected and used for measuring load. Section 4.4 looks at distributed

process management, namely how global process IDs are implemented as well as how a

process is selected for migration. Section 4.5 describes how resource discovery, system

selection and job execution is done in Zinc. In section 4.6, we look at the set of programs

that we will use as control for our experiments. Finally, section 4.7 provides a summary

for this chapter.

4.2 System Structure

In this section, the structure of the grid which is explored. Each participant uses the Zinc

software to create the grid. The resulting system is greater than the sum of its parts,

hence the usefulness of a grid is only seen when many di�erent administrative domains

participate.

4.2.1 Architecture Of The Zinc-based Grid

Figure 4.1 shows how a computational grid can emerge from the cooperation of several

administrative domains. Each administrative domain can be considered a vertex in a

55

Figure 4.1: Administrative Domains On The Grid

graph, and the directed edges between the vertices represent the administrative domains

being fully operational and connected to the others, and ready to participate in the grid.

Initially, any participant of this grid do not have to know the status of every other

participant, therefore we may start with an incomplete graph. The Name Dropper resource

discovery algorithm (described in chapter 2) will ensure complete graph connectivity once

Zinc runs for a while. Therefore, it is possible for administrative domains to join a grid

that's already fully connected by simply announcing itself to one of the other administrative

domains, and the others will pick up its presence quickly and begin sending jobs to and

accepting jobs from that domain.

Processes have the ability to migrate around di�erent administrative domains, thus

enabling them to make use of any resources that might be available throughout the entire

interconnected grid. These features work toward our goal of an operating system adapt-

able to a dynamic grid (where administrative domains can come online arbitrarily and is

accommodated quickly).

56

4.2.2 Administrative Domain Interaction

Figure 4.2: Administrative Domain Interaction Details

Between administrative domains, there is a lot of intercommunication between the

schedulers that oversee the execution of processes in each administrative domain (�gure

4.2). These schedulers pass the following information back and forth when required:

1. Process migration requests

2. A transfer of process checkpoints (together with whatever data �les the program was

using)

3. Resource discovery messages

Administrative domains are peers, and thus behave in a decentralised manner without a

central authority to control them. This is a necessary design element based on our goal

to have a decentralised grid where administrative domains retain full control of their own

resources and sharing only to the extent the local policy permits.

57

4.2.3 The Execution Domain And Controller

Figure 4.3: The Scheduler And Its Execution Domain

The execution domain is a set of n computing nodes (where n ≥ 1) which is under

a particular administrative domain which processes can execute on. The processes may

be migrated to any other node in the same execution domain without the need for inter-

scheduler communication. Each execution domain is governed by one scheduler, running

on a dedicated server which acts as a controlling node. Each node will run an execution

and monitoring daemon which records execution information and passes it to the scheduler.

Finally, each node runs on a modi�ed Linux kernel that allows checkpointing of individuals

processes. The software components that comprise Zinc are described as follows:

1. The EPCKPT-enabled Linux kernel which exports a checkpointing system call to

userspace which can be called to checkpoint a process into a checkpoint �le.

58

Figure 4.4: Mapping An Administrative Domain Onto A Physical System

2. The Zinc userspace scheduler is the entity which evaluates the load conditions of its

execution domain, and based on this information it will make scheduling decisions at

every interval of φ seconds (where φ was arbitrarily chosen at 20 for the implemen-

tation). The criteria for these decisions are discussed in the following section.

3. An execution and monitoring daemon does the actual movement and placement of

grid processes and process checkpoint images. It relies on the sshd program to

59

transfer checkpoint images, and passes messages back and forth with the scheduler

via TCP sockets.

Figure 4.4 shows how an administrative domain maps onto a sample set of hardware where

there is one scheduler and two execution domain nodes. Figure 4.3 shows the same admin-

istrative domain with interaction between the software components. Figure 4.5 shows how

the kernel and monitoring daemon uses it to checkpoint processes. The implementation of

these software components are described in the next chapter. For implementation details of

the checkpointing kernel modi�cations see section 5.3, while the scheduler implementations

(both kernel and userspace) are discussed in section 5.4.

Figure 4.5: The Kernel And Monitoring Daemon

60

4.3 System Information

4.3.1 Processor Load

System load is the number of all processes (grid processes or otherwise) in the system run

queue in the past 1 minute. Run queue length is an e�ective metric for determining system

load, as determined by Ferrari and Zhou [19], and is provided for by the Linux kernel. Thus

we have adopted this as an index for processor load.

4.3.2 Threshold

One of the decisions we had to make was how to decide just how �overloaded� a computing

node was before a decision is made to evict grid processes from it. Our threshold policy

is a function of CPU �strength� (bogomipsx)and installed memory size (memoryx), which

serves to represent the computing capabilities of a particular node x:

Tx = (tanh(
bogomipsx

4000
))(tanh(

memoryx

1000
))(10) (4.1)

It was found from our observations of load behaviour on the equipment we used that for

the most powerful of nodes, a load level of 10 was enough to make it slow and unresponsive.

Thus, based on this observation, equation 4.1 guarantees that the value of Tx is always

less than 10. This function is not based on any theoretical threshold calculation, but

was manually adjusted until it produced appropriate thresholds for every node in the grid

test-bed.

We used �bogomips� 1 of the node's processor to get an estimate of how fast it is.
1Bogomips or �bogus millions of instructions per second� isn't really a measure of computing capacity.

It is used by the kernel for timing calibration by counting the number of busy loops it can execute
in a particular period of time. However, we found that bogomips can be a useful (albeit very crude)
approximation of CPU power.

61

Based on the above function, the threshold value increases when we have more powerful

CPUs and more memory, hence allowing the system to accommodate higher loads before

migration is initiated. The hyperbolic tangent of the parameters in the function e�ectively

normalises it between 0 and 1. The values 4000 and 1000 and 10 are constants used as

weights in the equation until the threshold function �works� (adequately sets a threshold

for the node that prevents system overload) for all the computers in our grid test-bed,

calibrated manually by observing the performance responsiveness of di�erent nodes under

varying levels of load for the machines that were used. Further research is still required to

accurately determine optimal thresholds without resorting to manual calibration.

4.4 Managing Distributed Processes

4.4.1 Global Process IDs

The challenge of managing processes on a wide-area distributed network is keeping track of

the location of each process, and tracking information about them. Linux (and all Unix-like

operating systems in general) track processes running on a local machine via it's process

id, or pid. On the i386 architecture, the pid is de�ned as an integer, but the maximum

allowed processes on a Linux 2.4 system is 32,767 (a 16-bit value). This is to maintain

compatibility with older 16-bit Unix systems which enforced such a limit.

This arrangement works well enough on a single computer, where each process can

be accounted for to be either running, sleeping (there are two kinds of sleeping states

: interruptable and uninterruptable), stopped or zombie. However, when one adds the

possibility that a process may be checkpointed and migrated, we must add mechanisms to

identify processes uniquely across machines, and also to track their location.

Since Linux does not have a distributed design (each machine runs its own kernel), it is

62

di�cult and impractical to provide unique kernel pid's for all processes in the distributed

system. Here are some of the issues faced:

1. There need to be an agreement to which nodes are allowed to use which pid numbers

which would be impossible to do for a system where administrative domains are

allowed to join and part at any time.

2. The pool of usable pid's are relatively small, and increasing the number would break

compatibility with some applications.

3. A need to introduce new states into the kernel, and these states would need to be

synchronised with remote nodes when migration occurs

These problems are not easily solved in-kernel. Attempting to do so would needlessly bloat

the size and complexity of the kernel. Therefore, another layer of identi�cation was added

to userspace. Each process in the distributed system is uniquely identi�ed by:

1. The IP address of the zinc userspace scheduler in charge of the administrative domain

(which has a unique public IP)

2. A set of positive integers called uniqueid assigned in sequence to processes started

on any machine in the administrative domain. Each number in this set is unique.

This number is assigned to the process by the central zinc userspace scheduler of the

administrative domain, and the scheduler maintains a mapping of uniqueid to local

pid for each grid process spawned within its domain.

The Zinc userspace schedulers will only schedule and manage processes started as �grid

processes�, via the gstart command which submits the process to the system. Thus, all

63

�grid processes�, marked as such by Zinc, will get a global ID which combines the IP address

of its administrative domain and its uniqueid.

4.4.2 Selecting Processes For Migration

When selecting a process for migration, we employed a relatively simple algorithm which

has the goal of reducing the load on a particular host. Most process selection policies

in previous work are functions of process age, where a process that was �old enough� are

selected for migration [28, 44, 40, 2]. We developed our process selection policy based on

the following criteria:

1. Only grid processes are migrated, thus reducing the set of eligible processes to ones

that have a high probability of being CPU-intensive.

2. We used CPU cycles used by a process to represent its age, rather than how long it

has been since it started. Processes that use up more cycles tend to be heavy CPU

users that contribute to the load. The more cycles the process has used (the older it

is), the more likely it's going to be migrated.

3. Processes that use more memory will tend to be migrated, freeing up memory on

the loaded node, which increases its performance. Despite the cost of moving bigger

checkpoint images due to big virtual memory sizes, it is still worth doing for the

performance improvements on the host node when such processes are migrated away.

4. Processes which have already been migrated should be less likely to migrate again.

Each time a process migrates, its likelihood of being migrated becomes less.

Thus, the ranking algorithm in Zinc evaluates all grid processes in the system, and ranks

each process, p according to the following function which re�ects the requirements of the

64

above criteria:

Rankp =
CPUp ∗ V MSizep

Checkpointsp + 1
(4.2)

CPUp is the number of CPU cycles used by process p, V MSizep is the virtual memory

footprint size of p, and Checkpointsp is the number of times the process has been check-

pointed. The value of 1 is added to the denominator because we do not want a division by

zero condition when the process has never been checkpointed. Therefore, the more CPU

or RAM the processes uses, the higher ranked it is in the list of running grid processes.

The more times it has been migrated, its rank grows less.

If at a scheduling point, a given host is past the load threshold, the scheduler will pick

the highest ranked process based on the above algorithm, and have it migrated away. The

scheduler will continue to keep ranking and picking a process for migration every scheduling

interval until the load is reduced below the threshold.

4.5 Scheduling

The three major components to grid software encompass the functionality of resource

discovery, resource allocation and execution monitoring [67]. Zinc implements a basic

subset of the three stages, and is described in the following subsections.

4.5.1 Name Dropper : Resource Discovery

Each administrative domain tracks the following information about every node n in its

execution domain by polling them every 20 seconds:

65

1. Hostname, h � a unique network identi�er for the node within the administrative

domain

2. Processor load, l, on the node,

3. Available memory, m, on the node

4. Timestamp, t � when the information was obtained.

5. Threshold, T , for the node

6. Memory usage ratio, r � what percentage of memory has been used by the system

This information is collectively referred to as node state, ν. The node state for node q

at time of polling t is:

νt
q = {hq, lq,mq, t, Tq, rq} (4.3)

The execution domain state, ε is the set of all node states in an administrative domain.

The execution domain state of administrative domain u with n nodes at time of polling t

is:

εt
u = {νt+δ1

1 , νt+δ2
2 , . . . , νt+δn

n } (4.4)

Since the polling isn't done synchronously, there are slight di�erences between times-

tamp values for each node (hence, there is a small di�erence of δ between polling time t

and actual timestamp obtained for each node). However, because all the nodes in εu are

polled at once on a low-latency, high-speed internal network, the timestamp values of each

node are more or less equal, and the values of each δ should be negligibly small. For the

Name Dropper algorithm to work, the largest value of δ for all nodes in an administrative

66

domain should be less than the time between rounds φ. However, if the number of nodes

increases, the value of the largest δ will also increase, in which case a bigger φ should be

chosen.

Thus, the administrative domain state for u at time t can be described by:

1. The IP address of the scheduler, IPu

2. Its execution domain state, εt
u

The resource discovery algorithm is used to announce the presence of administrative

domains, and also to disseminate the above state information and propagate it throughout

the system. The algorithm works in the same way as the standard Name Dropper, with

minor changes to accommodate the extra information that needs to be transmitted to

other nodes. The neighbour list, Γ(u) in the modi�ed Name Dropper not only includes

the identi�ers of neighbouring (and its own) administrative domains (in this case, the IP

address of the scheduler) but also the execution domain state at time t of the neighbours

(and likewise, its own execution domain state). Therefore, its neighbour list at time t is

denoted as Γ(u)t.

At each round, each node u transmits Γ(u)ti to one randomly chosen node v where

v ⊂ Γ(u)ti . Upon receiving Γ(u)ti , node v will update its own neighbour list Γ(v)tj with

new information from u. For information about administrative domains that already exist

in Γ(v)tj , the new information is updated if and only if ti > tj .

Having the same e�ciency as the standard Name Dropper algorithm, each adminis-

trative domain will learn the system state very quickly in O(log2n)) rounds with high

probability.

67

4.5.2 Zinctask : System Selection

User of the Zinc grid will submit their jobs at the administrative domains that they belong

to (i.e., have a login and password). They can either submit their job to the scheduler,

where the scheduler will randomly select a node in the execution domain where it will run,

or the user can explicitly specify which node they want to initially run the job on. Initial

placement does not matter much from the system's point of view. Only when the load of

a particular node q exceeds its threshold value, lq > Tq, does the scheduler select another

node to migrate grid processes to.

The scheduler maintains two tables, one is a table of all grid processes submitted to it,

and another is a table of all computational nodes available for execution in the zinc grid,

extracted from Γ. The indices for the process table, P is the list of n processes, p with

uniqueid, d paired with the IP of the scheduler it belongs to, IP :

P = {pd1
IP1, p

d2
IP2, . . . , p

dn
IPn} (4.5)

The execution nodes table, E is indexed by a list of n nodes, ν with hostnames, h

paired with the IP of the scheduler it originated from, IP :

E = {νh1
IP1, ν

h2
IP2, . . . , ν

hn
IPn} (4.6)

When a process p is chosen for migration, it is marked for migration and the host on

which to migrate it to is decided upon by constructing a pair of eligibility lists, one being

a list of all eligible nodes in the local administrative domain (elocal) and another is a list

of all eligible nodes in all foreign administrative domains (eforeign).

68

The nodes are accepted from E into the eligibility lists if:

1. For all local nodes:

� The load/threshold ratio is less than 1 for the next 20 seconds (the duration of

the scheduling interval)

� The memory usage ratio is less than 0.662

2. For all foreign nodes:

� The memory usage ratio of less than 0.66

� The connection uplink between the home administrative domain and the for-

eign administrative domain has a bandwidth of at least 48 kilobits/sec and a

minimum latency of 10 seconds

When choosing a node within the eligibility list, all nodes in elocal and eforeign are

ranked with a composite numerical value according to desirability. The following criteria

were taken into consideration when designing the ranking algorithm:

1. All ranks are capped at a maximum value to prevent over�ows when invoking math-

ematical calculations on a computer

2. Migration inside ones own administrative domain is more e�cient than outside it,

therefore a bias was introduced to encourage local migration: the maximum rank of

foreign nodes is capped at 100 whereas for local nodes, the cap is 1000. Also, a local

node should be higher ranked than a foreign node if the load is equal.
2The value 0.66 or 2/3 is an approximation of the amount of load the virtual memory system of Linux

can handle before it starts swapping. It is an arbitrary value suggested by the Linux kernel programmer
community, and does not really have any empirical justi�cation besides �experience� by programmers in
the �eld.

69

3. When evaluating load, one is more concerned about load in the next few seconds

(when the process will arrive at the destination) rather than the load at the point of

scheduling. Yang et al. [83] assert that such predictions help grid computing system

attain better performance. Hence, a simple prediction mechanism was devised for

local nodes. The scheduler keeps a load history of all local and foreign nodes. The

local nodes' load history is recorded at every scheduling point. To predict the next

load, we used a variant of the LAST prediction model [45], but instead of taking the

last value, we construct a linear extrapolation function f(tn+1) based on the last two

entries of load l (out of n entries) of history data, when available:

f(tn+1) =


0 if n = 0
ln if n = 1
ln−ln−1

tn−tn−1
(tn+1 − tn−1) + ln−1 if n > 1

(4.7)

Although the actual load signal may be nonlinear, we found linear extrapolation to

be an adequate approximate �t for the data at su�ciently small intervals in time.

4. The prediction algorithm does not work well for foreign nodes where unlike the regular

polling of local nodes, we don't get data at consistent intervals for the foreign ones.

Thus another factor, reliability, is introduced to penalise the ranking of any foreign

node that has �uctuating load, by using a function of the standard deviation, σ of

load history normalised to a value where 0 ≤ σ ≤ 1:

reliability = 1− tanh(
σ

2
) (4.8)

The Zinctask algorithm is run to choose a host for the process to migrate to. The

algorithm is shown in �gure 4.6.

Once a host is chosen, the process needs to be migrated there. If the node is in

the local administrative domain (νlocal), the scheduler simply migrates it. If the node

70

resides in a foreign administrative domain (νforeign), a negotiation message is sent to that

administrative domain containing the following:

1. The requesting domain's IP address

2. The uniqueid of the process that wants to be transferred

3. The virtual memory footprint size of the process

4. The node in the target administrative domain the process wants to run on

for all x in elocal do
capacity ← PredictedLoad(x)

Threshold(x)

Rank(x)← 1
capacity+0.001end for

for all y in eforeign do
reliability ← 1− tanh(σ

2)
Rank(y)← reliability

lastload(y)+0.01end for
if highest rank of x ≥ highest rank of y then
Return the highest ranked x

else
Return the highest ranked y

end if

Figure 4.6: The Zinctask algorithm

Upon receiving this request, the target administrative domain compares the available

memory on the target node, m with the virtual memory footprint size of the requesting

process, vsize. If m > vsize, an acceptance message is given to the originating administrative

domain and migration begins. However, if m < vsize, a rejection message is sent and the

originating administrative domain removes νforeign from the eligibility list for one round

and the host selection algorithm is begun again. The search continues until an accepting

host is found. If the search exhausts all possible nodes, the process chosen to be migrated

is unmarked and continues running.

71

It is anticipated that the Zinctask algorithm provides better job throughput than no

placement strategy at all, because of the strategic and opportunistic placement of the

"best" host according to the design decisions above will ensure processes have to share less

CPU time amongst themselves if distributed wisely, thus getting more work done.

4.5.3 Zincd : Job Execution And Monitoring

The execution of jobs on a Zinc system is rather straightforward. A user submits a job to

the grid much like he or she executes a regular program, but by using the gstart command.

The user in an administrative domain can either specify a node in the execution domain

which he or she wants the job to run on, or if unspeci�ed, Zinc will randomly choose one

for him or her.

The monitoring of processes running on a given administrative domain is done at every

20 second interval by the scheduler when it polls its execution domain. A message is sent

out to every node, asking them to update the status information of the processes.

Once a process is completed, the completion time is logged and if its a foreign process,

the home administrative domain is noti�ed and the process with its data �les are packaged

and sent back to the originating administrative domain.

4.6 Control Software

In addition to the Zinc programs, a set of identical control programs were made that

duplicates the functionality of Zinc, but without the checkpointing feature. The control

programs use non-preemptive migration which use the same Zinctask algorithm for host

selection. A job submitted to the control program is either run on a random node or a

node of the user's choosing, just like Zinc. However, when a particular chosen node's load

72

exceeds its threshold, the Zinctask algorithm is invoked to choose a new host for running

the job. If the Zinctask algorithms exhausts its eligibility list, the job is marked as �failed�

and is not started. This is a necessary safety measure because the system is not able to

migrate or checkpoint a job if it's already running, and may stall the machine if it attempts

to run it anyway on an overloaded node.

During experimentation, arti�cial programs are used to represent CPU-intensive pro-

cesses. To simulate jobs entering the system, these arti�cial programs performed a busy-

loop with a counter (see �gure 4.7).

int i,j,k,x;

for(i=1;i<=MAX;i++)
{

for(j=1;j<=MAX;j++)
{

for(k=1;k<=MAX;k++)
{

x = (i*j)/(i*j);
}

}
}

Figure 4.7: Code to generate a CPU-intensive process

The duration of how long the program runs on a particular node is adjusted by modi-

fying the value of the symbolic integer constant MAX.

For tests that require a variable-sized memory footprint, a malloc() initialisation rou-

tine is added (see �gure 4.8). The size of the desired memory footprint is adjusted using

the MAXSIZE symbolic integer constant.

73

int * bigwhoop;

bigwhoop = (int *) malloc(MAXSIZE * sizeof(int));

if(bigwhoop ==NULL)
{

fprintf(stderr ,"Malloc failed\n");
exit (1);

}

for(i=0;i<MAXSIZE;i++)
{

bigwhoop[i] = 1;
}

Figure 4.8: Code to generate programs with di�erent memory footprint sizes

4.7 Summary

In this chapter, the design of the structure and algorithms for Zinc were presented. Al-

though there are numerous issues in designing a distributed system, we have chosen the

subset presented here to be the focus of our implementation. Global process IDs are

handled by the scheduler, as well as resource discovery, process migration selection and

placement. Besides the Zinctask placement algorithm we used in Zinc, we also imple-

mented a random placement strategy, as well as a version of the Zinc userspace scheduler

with process migration disabled.

74

CHAPTER 5

IMPLEMENTATION

5.1 Introduction

In this chapter, we discuss the implementation of the Zinc program and kernel extensions.

Section 5.2 is a general introduction to the components of the software, followed by imple-

mentation details of checkpointing that is provided by the EPCKPT patch which we use

for our system in section 5.3. Next, the scheduling mechanisms are discussed in section

5.4, both the kernelspace scheduler and the userspace Zinc administrative domain sched-

uler. Section 5.5 provides details on the resource discovery implementation and how Zinc

extracts state information and monitors the system. The command line tools we have

developed for interacting with the system is given a brief mention in 5.6 before a summary

in section 5.7.

5.2 Implementation Overview

The goal of the implementation of Zinc, is to add a layer of systems software on top of

GNU/Linux to make it "grid-enabled". GNU/Linux is not a distributed operating system,

nor can it be made a full-blown distributed operating system without considerable redesign

and rewrite of the kernel. However, our goal is to provide a "grid-aware" kernel and

userspace, so that processes may be moved about across the Zinc-enabled grid with ease.

To achieve that goal, we need to minimise the amount of intrusive changes introduced into

the Linux kernel, by only adding functionality that cannot be done outside of kernelspace.

Therefore, the implementation for Zinc consists of 2 parts: kernel-side code and userspace

75

code.

1. The kernel-side code consists of a Linux 2.4.22 kernel containing the following updates

and modi�cations:

� EPCKPT [61] is code initially written by Eduardo Pinheiro that adds checkpoint

and restore functionality to the Linux kernel.

� A process scheduler optimised for fairly scheduling compute-intensive jobs. This

scheduler was our collaborative development e�ort with the Linux kernel devel-

oper community, and was developed mainly by Constantine Kolivas [32], based

on the kernel scheduler of Ingo Molnar [54].

2. A sample implementation of the grid services which will utilise the underlying oper-

ating system �hooks�:

� A distributed grid process scheduler in userspace (the Zinc userspace scheduler)

� A daemon for tracking and monitoring of running grid processes (the Zinc mon-

itoring daemon)

� A utility for launching grid-aware processes (the gstart command)

The system as a whole would provides a computer with the tools to connect to other

similarly equipped computers, e�ectively sharing resources across the entire distributed

system. Processes may be migrated across this distributed system and use the aforemen-

tioned available resources.

A user logging on to any particular node in this distributed system does not see a

single system image, but instead is presented with a process execution service which may

be carried out on any machine in the grid.

76

The entire grid would run with each node having it's own kernel, like a network operat-

ing system. There would be too much kernel bloat if direct inter-kernel communication were

allowed and the grid scheduling took place in-kernel. Therefore, the kernel only supplies

the bare minimum necessary to implement process management; by allowing processes to

be checkpointed and restarted elsewhere. The kernel also implements a scheduling policy

that allows for another userspace scheduler to handle job priority reliably. The details of

the mechanisms that are implemented in this system is described in the following sections.

The following sections will discuss the implementation of each component of the system

in detail. When referring to the Linux kernel, the reference is speci�c to the 2.4.22 version

which was used in the implementation. Later (or earlier) versions of the kernel may di�er

in implementation details.

5.3 Process Checkpointing

Process checkpointing is one of the strategies for process migration. A running process

can be checkpointed into a �le that contains the state and instructions of the process. By

transferring this �le to another machine and restarting it, we achieve process migration. It

is necessary to implement process checkpointing in kernelspace, as the state of a running

process exists both in kernelspace and userspace. Linux in its current form does not

o�cially support process checkpointing. However, there have been a number of projects

that add support for this functionality into the Linux kernel, with varying levels of success.

We needed only to provide a checkpointing mechanism for Zinc, thus we chose a simple

patchset already implemented for Linux that does this with minimal changes.

EPCKPT[61], in its initial form was a kernel patch architecture developed by Eduardo

Pinheiro to provide explicit checkpoint and restore functionality to Linux. It was originally

77

designed to work with early versions of the Linux kernel (2.0, 2.2 and early 2.4). The

functionality provided was:

1. Support for the i386 architecture (process checkpointing support is architecture-

speci�c).

2. Checkpoint of any running process into a checkpoint �le.

3. The checkpoint �le is an executable that resembles ELF hence the resuming of pro-

gram counter and restoring of memory map and program state can be done by ex-

ecuting the checkpoint. This is achieved by adding a binary format handler to load

checkpoint �les as executables in fs/binfmt_elf.c in the Linux kernel source tree.

4. A system call interface to the checkpointing facility.

This functionality was decided to be the most �exible way to implement process check-

pointing and migration, and thus was chosen to be used in the Zinc project. The version

available was a kernel patch against 2.4.2, but we ported the patch forward to a more re-

cent 2.4.22 kernel. We had to clean up a number of things, mainly eliminating side-e�ects

due to the change in the kernel version. The core functionality however, remained the

same. The major changes we made were incrementing the internal system call symbol to

avoid con�icts with new system calls introduced in the interim versions of the kernel from

2.4.2 to 2.4.22. The second item we updated was the mechanism for reopening �les was

deferred to userspace, as the implementation in kernelspace in Pinheiro's initial patch was

incomplete.

The checkpoint and restore mechanism is exposed to userspace via two system calls

introduced in the EPCKPT patch:

78

1. checkpoint (int pid, int fd, int flags)

This system call expects the pid of the process to be checkpointed as its �rst argu-

ment, a �le descriptor to which to write the checkpoint image as its second argument,

and optional �ags to modify the checkpointing behaviour in the third argument. The

checkpoint image writes to any �le descriptor, which means it can write to a �le or

to a socket, making it convenient if one wants to migrate the checkpoint image right

away. However, this migration feature is not used in Zinc as we create checkpoint

images on disk �rst before migrating them. This is to accommodate the two-level

scheduling hierarchy that does not allow execution nodes to communicate directly.

The flags argument can take several options:

� CKPT_CHECK_ALL Checkpoints all descendent processes of the process which will

be checkpointed. This option is not used by the Zinc userspace scheduling

algorithm, as single independent processes are assumed.

� CKPT_KILL Kills the process after it is checkpointed. If this option is not spec-

i�ed, the program will continue running. This option is used by the Zinc

userspace scheduler.

� CKPT_NO_SHARED_LIBRARIES By default, the checkpoint will include both the

executable image and any loaded shared libraries it uses. This is particularly

useful when there is no guarantee that the host the process gets migrated to will

have the same shared libraries. However on a software-homogeneous distributed

system, this is unnecessary and can this option can be used to save some disk

space. Zinc should be able to run on a system that has heterogeneous Linux

installations, so this option is not used.

� CKPT_NO_BINARY_FILE Does not include the executable �le in the checkpoint,

and relies on the system to have it available in its original location. This option

79

is not used by Zinc.

2. collect_data (int pid)

Before a process can be checkpointed, the kernel needs to collect data about the

process while it is in execution, such as the �les it opened, children it forked o�, and

memory that it allocated. Therefore, any process that we know will be checkpointed

needs to be marked with this system call on start up. This is acceptable, as to

reduce memory overhead, we do not want to collect data about every process. The

Zinc userspace scheduler deals exclusively with �grid processes� which will be marked

as such with the collect_data() system call when gstart is invoked to start the

process. This system call expects the pid of the process we want to collect data on

as a parameter.

In the kernel, the information saved about any running process is stored in a struct

called task_struct. The de�nition to task_struct in kernel 2.4.22 has �elds for the

following:

1. Process id (pid), as well as group and and user id's

2. Process state

3. A pointer to the process' address space

4. The open �le descriptors of a process

5. Pointers to parent and child processes

6. Other maintenance information such as signal handlers, locks, ipc information etc.

The only �elds EPCKPT is concerned with is the pointer to the address space and the

pointer to the �le descriptors used by the process. The other �elds are simply discarded.

80

This is perfectly acceptable, since once a process restarts, the only information that needs

to stay persistent in our design requirements is the address space, open �le descriptors and

their state, and the CPU registers.

Further information on the exact structure and function of the process descriptor,

memory descriptor, �le descriptor table, as well as the rest of the Linux kernel can be

found in [6].

When a user (or a user program) wants to request for a particular program to be

checkpointed, it calls the checkpoint system call. Inside the kernel, the sys_checkpoint()

function will check if the �le descriptor and process id given to it is valid. If the �le descrip-

tor and pid is valid, the process is sent a signal to indicate it is to be checkpointed. Eduardo

Pinheiro used SIGUNUSED for this purpose. If the CKPT_CHECK_ALL �ag is speci�ed, it will

�nd all children processes of pid and send the signal to them too. If the process requested

for itself to be checkpointed, no signal is sent, but the kernel function do_checkpoint()

is called immediately instead. The in-kernel signal handler for a process that gets the

SIGUNUSED signal will also simply call the kernel function do_checkpoint(). The func-

tion takes one argument of type struct pt_regs, which is a struct that incorporates the

current register state of the current process.

The do_checkpoint() function is where the actual checkpointing takes place in the

kernel. The function will save the necessary state information to disk. The open �le

descriptors are described by the struct files_struct *files �eld in task_struct. Ta-

ble 5.1 shows some of the �elds in the struct files_struct structure which is used by

do_checkpoint() during the checkpointing process.

First, the file_lock spinlock is set to ensure exclusive access to the �eld by the

81

Struct �elds Description
rwlock_t file_lock Read/write spin lock for the data struc-

ture
int max_fds Current maximum number of �le objects
struct file ** fd Pointer to array of �le object pointers
fd_set * open_fds Pointer to open �le descriptors
Table 5.1: Fields representing open �les of a process in struct files_struct *files

checkpointing function. Then, for each �le object in struct file ** fd up to max_fds,

the corresponding �le descriptor in open_fds is checked to see if it's open. If it is, then the

each �le object's �lename, access mode, �ags and �le pointer position are all dumped into

the checkpoint �le header. If the �le descriptors are for pipes, then the pipe information

is marked as such, and saved. EPCKPT however does not save the state of sockets, so �le

descriptors that represent open sockets are simply ignored.

Next, the checkpointer saves the process address space. The memory usage of a pro-

cess is described by the struct mm_struct *mm �eld in task_struct, called the memory

descriptor. The memory descriptor points to the process address space which is a complex

data structure containing information about how the program running in the process is

laid out in memory, plus additional information to help with the memory management for

the process. The information that is of interest to the checkpointer is presented in Table

5.2.

It is fairly straightforward to save the values of all the virtual address delimitersm then

traverse the list of memory region objects pointed to by struct vm_area_struct *mmap

and write them out into the checkpoint �le.

Lastly, the checkpoint function reads the values of the registers from the struct

pt_regs regs (see �gure 5.1) argument that was passed to it.

The entire contents of the structure is dumped to the checkpoint �le, and thus com-

82

Struct �elds Description
unsigned long start_code,
unsigned long end_code

Delimits the virtual addresses of the ex-
ecutable text

unsigned long start_data,
unsigned long end_data

Delimits the virtual addresses of ini-
tialised data

unsigned long start_brk,
unsigned long break

Delimits the virtual addresses of heap be-
tween initial virtual address and current
end address

unsigned long start_stack Initial address of user mode stack
unsigned long arg_start,
unsigned long arg_end

Delimits the virtual addresses of where
the command-line arguments are stored

unsigned long env_start,
unsigned long env_end

Delimits the virtual addresses of where
the environment variables are stored

struct vm_area_struct *mmap Pointer to the head of the list of memory
region objects

Table 5.2: Fields representing process address space in struct mm_struct *mm

struct pt_regs {
long ebx;
long ecx;
long edx;
long esi;
long edi;
long ebp;
long eax;
int xds;
int xes;
long orig_eax;
long eip;
int xcs;
long eflags;
long esp;
int xss;

};

Figure 5.1: The structure of struct pt_regs for the i386 architecture

pleting the checkpointing process.There are other state information in the process, but

since IPC is not supported by EPCKPT nor is it necessary in our design assumptions,

shared memory and other IPC mechanisms (such as sockets) are not saved. The check-

point �le is saved in a format that resembles ELF (executable and linking format) with

additional headers, and EPCKPT adds support for this modi�ed ELF as an executable

format. Therefore, to restart the checkpoint, all the user needs to do is execute the �le,

83

and a new process descriptor will be set up for it, with a new execution context, with the

state information reconstructed from the information stored in the checkpoint �le. The

restart function in the kernel sets up all the necessary data structures and �lls them out

one by one based on the information read from the checkpoint. Any other maintenance

information is recreated anew, including the process id. This is necessary because there

is no guarantee that the pid number used by the checkpointed process will be available

on the host it migrates to. However, the userspace scheduler maintains a unique id for all

processes started as "grid processes", which allows the tracking of speci�c processes.

struct open_files
{

int entry_size; /* How many bytes are we dumping after
this struct */

int type; /* CKPT_PIPE , CKPT_FILE , others */
int fd; /* Original fd */
union
{

struct
{

unsigned long inode; /* just a unique identifier
of inode */

unsigned rdwr :1; /* 0 - read , 1 - write */
} pipes;
struct
{

unsigned long int file_pos;
unsigned long file; /* unique identifier of struct

file */
int flags;
int mode;
char *filename; /* see (1) */

} file;
} u;

};

Figure 5.2: The structure of struct open_files

The EPCKPT patch does not reopen �les which were in use. To solve this, we decided

to do this in userspace. We integrated the reopening of �les into the gstart program that

84

is used to execute grid processes, thus ensuring that �les will be reopened whenever a user

starts or restarts a �grid process�. The reopening of �les in use by the gstart program is

accomplished by parsing the checkpoint �le for the list of �le descriptors that were used to

open �les, and extracting the �lename, access mode, �ags and �le pointer position into an

array of open_files structures (called openfiles) as shown in �gure 5.2.

Looping through the array using the variable i as a counter, the gstart program

re-opens each �le using the open system call (see �gure 5.3).

filedes = open(openfiles[i].u.file.filename ,
openfiles[i].u.file.flags , openfiles[i].u.file.mode);

Figure 5.3: Calling the open() system call

Then, the �le descriptor is set to a number matching the old one using the dup2 system

call (see �gure 5.4).

ret = dup2(filedes , openfiles[i].fd);

Figure 5.4: Calling the dup2() system call

Next, the �le position is set to the place last used when checkpointed using the lseek

system call (see �gure 5.5).

ret = lseek(filedes , openfiles[i].u.file.file_pos , SEEK_SET);

Figure 5.5: Calling the lseek() system call

Finally, gstart will call execve to restore the checkpointed program image, while

85

inheriting all the open �le descriptors (which is the standard behaviour for execve on

Linux).

5.4 The Schedulers

5.4.1 The Kernel Scheduler

The scheduler is the part of the operating system kernel that decides how a system is

multitasked, by assigning each process on the system to a CPU for a speci�c time quantum,

before it is preempted and another process is allowed to run. The time quantum given to

a speci�c process is based on the Unix �nice� value that is assigned to that process by the

user, and is then worked out into a priority value also based on other factors.

The default Linux 2.4 scheduler works as follows:

1. The scheduler maintains 1 queue of processes per CPU.

2. CPU time is divided into epochs. In a single epoch, every process has a speci�ed

time quantum whose duration is computed when the epoch begins.

3. Whenever a process runs, it uses up its time quantum

4. An epoch ends when all processes have used up their time quanta. Then the kernel

recomputes the time quanta of all processes, and another epoch begins.

This default scheduler is of O(N) complexity, where N is the number of processes in the

system.

At the time when Zinc was initiated, the next generation kernel (numbered 2.5.x) was

still under heavy development1. It was during development of kernel 2.5.x that the kernel
1The development kernel has since been released as the stable 2.6.x series kernel, and at the time of

86

developer Ingo Molnar introduced a new scheduler into the Linux kernel, where scheduling

decisions can be made in O(1) time. The algorithm works as follows:

1. The scheduler maintains two types of processes queues per CPU, one for active

processes and another for processes with expired timeslices. Each queue has sub-

queues for each Unix �nice� priority value is associated with. Therefore, inserting a

new process into a queue is also an O(1) time operation, and the processes become

e�ectively "sorted" by priority.

2. Every process of the equal priority X is given N units of timeslice, and each process

in the active process queue is allowed to run for its allocated timeslice.

3. If a process has priority Y and Y > X then it is given M units of timeslice where

M > N .

4. Unless preempted by another process of a higher priority (if one wakes up), a process

will run until it's timeslice expires or it goes to sleep voluntarily.

5. When a process's timeslice expires, it is removed from the active queue and inserted

into the expired queue. Once the active queue becomes empty, the two queues swap;

expired queue becomes the active queue and the active queue becomes the expired

queue.

Scheduling algorithms for Linux use dynamic priority; the number of timeslices al-

located to any particular process is a function of its Unix �nice� value and interactivity

behaviour. The scheduler would tend to promote the priorities interactive processes higher

to make them seem more responsive to user input. This behaviour is unnecessary for

compute-intensive grid servers, and is even detrimental to the throughput of CPU-intensive
writing is at version 2.6.17.1

87

processes. Therefore, we collaborated with kernel developer Con Kolivas to produce a

scheduler for Linux 2.4 based on the new development scheduler, using the Ingo Molnar's

algorithm but with the following changes:

1. In-kernel priority is static and based entirely on the Unix �nice� value. This would

ensure that each process is treated as fairly as possible based on the priority assigned

to it by userspace. This enables the userspace scheduler to enforce priority policies

instead of the kernel scheduler, which simply runs and schedules processes at the

priority that was assigned to it and does not promote or demote the priority of that

process.

2. Timeslice quanta are increased to allow processes to get more bene�t from the CPU

cache (the �hot cache� e�ect).

3. Even when processes are preempted (by another process of a higher priority value),

it is delayed for a short time so that even lower priority tasks get to run for some

time bound to the CPU before being expired to get hot cache bene�ts.

According to Hussein et al. [32], the Zinc kernel scheduler was benchmarked by to

have a 40% throughput increase compared to the default 2.4.22 kernel scheduler, and even

showed a performance gain against the experimental 2.6.0-test9 kernel.

5.4.2 The Zinc Userspace Scheduler

The Zinc userspace scheduler or administrative domain scheduler is implemented in userspace

and is a multithreaded server process that accepts connections and messages from other

schedulers as well as the monitoring daemons in its own administrative domain. A thread

is started whenever it receives a message, and the thread ends when it has �nished pro-

88

cessing the message. The Zinc userspace scheduler monitors the grid processes running on

its execution domain, and decides when and where to migrate processes. It also negoti-

ates with other administrative domain schedulers on the exchange of processes to migrate

amongst administrative domains.

The Zinc userspace scheduler maintains two tables of information about the state of

its administrative domain:

1. The state of all grid processes that is currently executing in any of the nodes in the

execution domain

2. All execution hosts known to it, whether they are in its own execution domain, or

hosts in other administrative domains which has announced themselves to the Zinc

userspace scheduler. Both sets of information are maintained in the same table, mak-

ing it possible to sort all the available execution nodes by ranking the �desirability�

of each node. Each host also has meta-information associated with it:

� The load history of the node, in an array of �oating point numbers of type

float. The last 20 values are recorded.

� A weight variable of type double that is enumerated to assign ranks to the

node.

3. A list of other administrative domains it knows about, represented by the IP addresses

of the Zinc userspace schedulers of each administrative domain

Every time a new process starts in an execution domain (the execution domain where

the process is initiated is called the home execution domain), the process launcher on

the host node in the execution domain will send the following information to the Zinc

89

userspace scheduler governing that particular administrative domain (which is called the

home administrative domain):

1. The process id of the newly started program

2. The user that started the program

3. The hostname and IP address of the node that started the program

4. The program name

5. The time which the program began

6. Current working directory of the program

Additionally, the following information about the processes is maintained by the Zinc

userspace scheduler:

1. IP address of the host that the running process was currently started or restarted

on.

2. The number of times the process has been checkpointed

3. The source administrative domain that the process originated from

4. The program execution state, whether it is in the CPU run-queue or checkpointed

5. The program's unique ID, which is an integer that uniquely identi�es any grid process

within a particular administrative domain.

If the process is a newly started process (as opposed to a restarted checkpoint), then

a unique id is assigned to it. The unique id is an integer of type long (which is 32 bits on

90

i386). The unique id starts at 0, and increments for each process that gets started within

a particular execution domain. Once the process is running, the monitoring daemon on

the node that the program started executing in will give the Zinc userspace scheduler

additional information about the process:

1. �Nice� value (priority).

2. RSS or resident set size of the process (the amount of physical memory the process

is currently using, minus pages that have been swapped out).

3. Virtual memory footprint of the process (the total amount of memory the process

takes up, including the pages currently not in physical memory).

4. Current CPU usage of the process (the number of ji�es the process has been sched-

uled in either kernel mode or user mode on this current host for this host since it

was executed or restarted)

When a process is checkpointed, the following information is embedded together in the

checkpoint �le:

1. Original working directory.

2. The names and contents of the �les which the process opened.

3. The unique ID assigned by the home administrative domain Zinc userspace scheduler

when the process was �rst created.

4. The IP address of the original host it was started on in its home execution domain.

5. The number of times checkpointed

6. The original priority assigned by the home administrative domain

91

7. The IP of its home administrative domain scheduler node

8. Program name

The checkpoint �le is then ready for migration, and is sent to the node within its admin-

istrative domain on which the Zinc userspace scheduler resides. When a target system is

found by the Zinc userspace scheduler, the entire �le is copied over via ssh to the target

host. If the target host is in another administrative domain, a message requesting a process

transfer is made to the Zinc userspace scheduler that governs the foreign administrative

domain. The message contains the following information:

1. The origin administrative domain

2. The requested node in the target execution domain

3. Process id and virtual memory size of the process

The target administrative domain userspace scheduler will evaluate whether there is

su�cient memory on the target node, and also whether the memory on that node is

su�cient to accommodate the virtual memory size of the process. A message is sent

in reply to the requesting administrative domain userspace scheduler either accepting or

rejecting the process transfer request (�gure 5.6).

When an administrative domain agrees to receive a checkpoint �le, it is received, sent

to the target host in the execution domain, unpacked into a new temporary working di-

rectory with all its �les on the given node in the execution domain, and �nally the Zinc

userspace scheduler restores embedded values of the unique ID, home administrative do-

main userspace scheduler IP and the number of times the process has been checkpointed

in the process table. The program name does not really mean anything to the remote

92

Figure 5.6: Checkpointing And Migration

Zinc userspace scheduler, so it is not restored, and the checkpoint executable name is used

instead. The priority of the process will run at a �nice� value one greater than the highest

�nice� value for the set of grid processes that belong to the home execution domain (hence

at a lower priority). However, if the �nice� priority is at the maximum value of 20, then it

is maintained at 20.

There is one thread in the Zinc userspace scheduler that checks the state of the admin-

istrative domain at a �xed interval of roughly 20 seconds2. Whenever it needs to inspect

the state of the system and make scheduling decisions based on the assessment, the Zinc

userspace scheduler is said to have reached a scheduling point. At each scheduling point,

the Zinc userspace scheduler will query the monitoring daemons on every node in the ex-

ecution domain. The monitoring daemons will then return information about every grid

process that is running on their respective nodes, and information about the host itself.

The information that is updated for the processes is priority, RSS, virtual memory usage

and CPU usage. After the information is updated, the scheduler will make checkpoint and

migration decisions.
2Since the version of GNU/Linux used does not support hard realtime, there is no guarantee that

exactly 20 seconds elapse between intervals, and thus the interval is somewhere between 20-35 seconds

93

5.5 Resource Discovery And Monitoring

Resource discovery is implemented in the Zinc userspace scheduler. When the Zinc userspace

scheduler �rst starts up, it loads an initial set of addresses of other administrative domains

from a con�guration �le. It is assumed that users participating in the grid know of at

least one other administrative domain. The rest of the administrative domains can be

dynamically discovered during execution via the Name Dropper algorithm. However, in

the current implementation of Zinc, only host information is discovered on the network,

it is assumed they are who they say they are; there is no propagation of identi�cation

credentials in this implementation as security details are beyond the scope of this research.

However, it is possible to implement a public key infrastructure based certifying authority

that can verify the authenticity of hosts. Currently, the trust model is commutative, but

more sophisticated trust models can also be considered. See section 7.5 for details.

After the Zinc userspace scheduler starts up, the nodes in the execution domain will

�re up the monitoring daemons. The �rst thing these daemons do is report to the Zinc

userspace scheduler of their existence, and then each daemon supplies the following infor-

mation:

1. Its current CPU load.

2. Its current available memory.

3. The percentage of memory usage.

Within the scheduling thread, the Zinc userspace scheduler will broadcast information

about all its execution domain nodes to other administrative domains using the Name

Dropper algorithm. At every scheduling point, the Zinc userspace scheduler will ask every

94

node in the execution domain to update the CPU load and memory information by sending

a message to them. Then it will select one administrative domain at random from its list

of known administrative domains, and send the CPU load and free memory information

of each node to the target administrative domain chosen in a network message. Similarly,

at certain intervals, the Zinc userspace scheduler for a particular administrative domain

will receive information about other execution domain hosts from foreign administrative

domains. The Name Dropper algorithm will propagate the information in O(log2N) time.

This is done continually to ensure that new values keep propagating through the network

of administrative domains, and is required for the Name Dropper algorithm to work.

CPU load, total free memory and process information is all obtained via the /proc

�lesystem on each node by the monitoring daemon. The /proc �lesystem exposes data

from the kernel to userspace, allowing statistics to be collected about the system that only

the kernel can track accurately.

5.5.1 Obtaining CPU Load

The CPU load is a function of the number of processes that is in the CPU runqueue. The

/proc/loadavg �le returns the number of jobs in the run queue (state R) or waiting for

disk I/O (state D) averaged over 1, 5, and 15 minutes. The monitoring daemon uses the

most recent value, which is the number of jobs averaged over the past 1 minute.

5.5.2 Obtaining Total Free Memory And Usage

The total free memory of a particular node can be found by parsing the /proc/meminfo

�le. The kernel doesn't really keep a lot of memory free and idle. Most of the free RAM

is used for the caching of frequently used pages, but this cache is released to become free

memory when the user needs more RAM. Therefore, when calculating the free available

95

memory of a particular node, it totals the following:

1. Free available memory

2. Memory used for cached pages

3. Memory used for miscellaneous bu�ers

The total value is what the Zinc system de�nes as "free memory":

memfreetotal = memfree + memcached + membuffers (5.1)

The memory usage ratio is de�ned as:

memratio =
memtotal −memfreetotal

memtotal
(5.2)

5.5.3 Preventing Overloading

The monitoring daemon enforces a grid process limit to prevent the node from being

swamped with processes. There are two ways it accomplishes this. When a node exceeds

its load or memory usage threshold, it will do the following:

1. Rejects migration requests to the node.

2. Tries to migrate out grid processes to other nodes.

When the Zinc userspace scheduler detects the load or memory usage threshold are past

the limit, it will initiate the process selection mechanism for checkpointing and migration

to another host. However, the Zinc daemons have no authority to checkpoint or migrate

96

non-grid process (i.e. processes not started with the special gstart program which is used

to launch grid processes), hence the node becomes almost unusable if it becomes overloaded

with non-grid processes. In this event, the scheduler will reject any migration requests to

that particular node, and will immediately migrate out any newly started grid processes

at the next scheduling point.

When evaluating our system, we needed to compare preemptive migration with non-

preemptive migration (initial placement). Therefore, we created a version of the Zinc

scheduler which disables checkpointing and migration and uses the Zinctask algorithm to

perform initial placement instead. When checkpointing and migration is disabled and the

node is overloaded, no new grid processes can be created there and any attempt to do so

is denied by the monitoring daemon and a message is sent to the Zinc userspace scheduler

informing it of the grid process creation failure.

5.6 Command Line Tools

Zinc includes several command line tools that is used to submit processes to the system, as

well as manual checkpointing utilities. The gstart program is used to start �grid processes�

on any node. The gstart program requires the Zinc userspace scheduler and monitoring

daemons to be active before it can work. It takes two arguments; the �rst is the program

name that the user wants to start. The second argument is optional, and represents the

�nice� value the program will be started at. If none is speci�ed, then the default �nice�

value of 0 is assumed.

The second command line tool is the ckpt program that can manually checkpoint

running processes. It accepts the process id of the desired process to be checkpointed as

its only parameter and creates a default checkpoint image called checkpointed. This �le

97

can be renamed, and to resume the program one needs only to execute it like any other

executable binary. This tool is useful for debugging.

For future work, it would be possible to create a specialised �grid shell� that users can

log in to and any programs they start will automatically become �grid processes�.

5.7 Summary

Our implementation of Zinc relies heavily on existing checkpoint code written by Eduardo

Pinheiro. We have cleaned up and ported the implementation to a more recent version

of the 2.4 Linux kernel (2.4.22), and �xed support for opening and closing and reopening

of �les. The process checkpointing API provided by the EPCKPT patch gives Zinc the

ability to create process images that can be migrated and restarted. The Linux kernel

scheduler that we used in Zinc was developed speci�cally to cater to grid processes by

giving slighter longer CPU time quantums, thus providing a bene�t for long-running CPU

intensive processes. Apart from the local kernel scheduler, there exists an administrative

domain scheduler in userspace (the Zinc userspace scheduler) which is implemented in

C as a multithreaded daemon. This userspace administrative domain scheduler handles

the actual placement of processes in the grid by checkpointing and migrating processes.

On each node, a monitoring daemon reports state information of the node to the Zinc

userspace scheduler. The monitoring daemon also prevents the creation of grid processes

on overloaded nodes when checkpointing and migration is disabled. The gstart command

is used to start grid processes.

98

CHAPTER 6

EXPERIMENTS AND DISCUSSION

6.1 Introduction

In this chapter, we present an experimental evaluation of the Zinc's performance and pro-

cess management capabilities. Section 6.2 gives details about our experimental environ-

ment which document the hardware and software we used. We have split the experiments

into two parts. The �rst part in section 6.3 details the testing of process migration on a

local area network and also over the internet. The second part in section 6.4 deals with an

investigation into the factors that in�uence job throughput on our grid test-bed. Section

6.5 is the discussion of the results followed by a summary in section 6.6.

6.2 Experimental Environment

To evaluate wide-area process migration in Zinc, we set up four di�erent administrative

domains, three inside the School of Computer Science in Universiti Sains Malaysia, Penang,

Malaysia and the fourth in a personal residence in Long Island, New York, United States

(see �gure 6.1). The administrative domains are named after the hostname of the machine

that runs the Zinc userspace scheduler. The hardware speci�cations to administrative

domains 1, 2, 3 and 4 are listed in tables 6.1, 6.2, 6.3 and 6.4 respectively.

Function Hostname Num CPU type Memory Network Adapter
Scheduler frodo 1 1.70 GHz P3 256 MB 3Com 59x (eth0)
Node samwise 1 1.70 GHz P3 256 MB 3Com 59x (eth0)

Table 6.1: Administrative Domain 1 (Frodo) in USM, Penang

99

Figure 6.1: Layout Of Hardware In The Zinc Grid Test-bed

Function Hostname Num CPU type Memory Network Adapter
Scheduler grid010 1 1.70 GHz P4 256 MB 3Com 59x (eth0)
Node earendil 1 1.70 GHz P4 256 MB 3Com 59x (eth0)
Node redoctober 1 1 GHz P3 256 MB 3Com 59x (eth0)

Table 6.2: Administrative Domain 2 (Grid010) in USM, Penang

100

Function Hostname Num CPU type Memory Network Adapter
Scheduler aurora 1 1.40 GHz P3 2 GB Intel 82545EM

dual cpu (SMP) GigE (eth0)
Intel 82557 (eth1)

Node aurora{1�16} 16 1.40 Ghz P3 1 GB Intel 82545EM
dual cpu (SMP) GigE (eth0)

Table 6.3: Administrative Domain 3 (Aurora) in USM, Penang

Function Hostname Num CPU type Memory Network Adapter
Scheduler box0 1 233 MHz P2 64 MB 3Com 59x (eth0)
Nodes box1 1 266 MHz P2 64 MB 3Com 59x (eth0)

Table 6.4: Administrative Domain 4 (Box0) in Long Island, New York

Administrative domains 1, 2 and 3 are connected together on a 100BaseT Fast Ethernet

switched network, and thus have ample bandwidth to communicate and transfer checkpoint

images with one another (Administrative Domain 3 uses a gigabit switch to communicate

within its domain, the connection to domains 1 and 2 is limited to 100BaseT). Adminis-

trative domain 4 however is connected to the rest of the administrative domains via the

internet, and thus has higher lag times. An average connection speed of around 500 Kbps

is available between administrative domain 4 and the rest of the administrative domains

in Malaysia, though the actual attained speed at any particular moment depends on the

amount of tra�c and congestion on the network at that time.

6.3 Wide Area Process Migration

6.3.1 Experimental Design And Methodology

The purpose of this part of the experiment is to determine the feasibility of wide-area

process migration by determining the time taken for a small and average-sized process

to migrate both on a LAN and across the internet. Administrative domains 1, 2 and

4 were used in the setup of the wide area process migration test. The domains were

chosen to represent and test speci�c instances of LAN migration and internet migration

101

Figure 6.2: Migration Test Con�guration

(see �gure 6.2). Therefore, the test was divided into two sub-tests, local-area migration

(migration over a LAN) and wide-area migration (migration over the Internet). We used

two programs, p1 and p2, that had �xed virtual memory sizes of approximately 5 megabytes

and 25 megabytes respectively. The resulting checkpoint sizes are 5,335,040 bytes for p1

and 26,306,560 bytes for p2. These virtual memory sizes are typical of CPU-intensive

processes that we observed running on the machines in the grid test-bed. We assume that

large amounts of data �les do not need to be transferred for these kinds of processes.

The processes were migrated between administrative domains 1 and 2 for the local area

migration test and between administrative domains 4 and 2 for the wide area migration

test. Migration time is the time from the point a process gets checkpointed on the source

host to the time it is restarted on the destination host. This includes the time taken to

checkpoint the program, transfer the checkpoint image, and restore the checkpoint on the

102

remote host. Administrative domain 2 is the destination for each migration in all the tests.

Each test was carried out 3 times, and the mean of these runs were calculated.

6.3.2 Experimental Results

The mean results of wide area-process migration over 3 runs are shown in tables 6.5 and

6.6.

Program Run Time to migrate (seconds)
p1 1 3
p1 2 3
p1 3 3
p1 Mean 3.0
p2 1 11
p2 2 10
p2 3 10
p2 Mean 10.3

Table 6.5: Local-area migration times for processes p1 (5,335,040 bytes) and p2 (26,306,560
bytes)

Program Run Time to migrate (seconds)
p1 1 85
p1 2 89
p1 3 95
p1 Mean 89.7
p2 1 455
p2 2 387
p2 3 414
p2 Mean 418.7

Table 6.6: Wide-area migration times for processes p1 (5,335,040 bytes) and p2 (26,306,560
bytes)

It is clear from the results above that migration only takes several seconds for local

migration, and thus the overhead of migration for processes even with relatively large mem-

ory footprints (totalling several megabytes) is within reasonable bounds, given su�cient

bandwidth. Internet-based migration takes a longer time to accomplish, though the worst

case for the migration of p2 is still only at 7 minutes 35 seconds. The grid was designed to

103

accommodate jobs that will run for hours or even days, and an overhead of several minutes

is negligible. Also, dedicated research networks o�er far greater internet bandwidth than

our grid test-bed, thus reducing the potential migration time even more for a real system.

Thus, wide-area grid process migration is a feasible mechanism to implement as far as

atomic processes are concerned. When even more bandwidth is available, it is possible

to get better data transfer rates. Barak et al. [4] achieved an average process migration

rate of 102.6 MB/s with their system, due to the availability of better networking facilities

(gigabit 1GB/s Ethernet within their campus network and Ethernet 100MB/s connection

across towns that are 10 kilometres apart).

6.4 Factors That In�uence Job Throughput On The Grid :

Experiments And Results

6.4.1 Experimental Design And Methodology

For the second part of the experiment, we wish to �nd out the impact of process migration,

the Zinctask algorithm, administrative domain size and power and the length of the major-

ity of processes in the system on the job throughput of our grid testbed. In investigating

the chosen factors that in�uence job throughput, we chose to do a factorial experiment.

Factorial experiments are conducted to �nd the e�ect of pre-determined factors on the

mean value of a response variable. The response variable is the metric we want to evaluate

the e�ectiveness of our algorithms. The response variable is yield, which is the number of

processes completed at any single administrative domain in one experiment run. The value

of yield represents the throughput achieved by an administrative domain participating in

the grid. One of the goals of this research is to evaluate the e�ectiveness of distributed pro-

cess management with respect to the factors which we have chosen to study. The factors

which we found interesting to look at were the size and computing power of administra-

104

tive domain, length of the majority of the jobs, preemptive migration vs. initial process

placement and the Zinctask host selection algorithm vs. random placement. Therefore, we

chose a 4 factorial design for the throughput experiment. In this model, each combination

of the factors is tested for interaction.

In our experimental model, we chose to represent the factors by choosing discrete values

for each of them:

1. The computing power and size of the administrative domain (Point of entry)

� Administrative domains 1,2 and 3 were used. Administrative domain 1 (frodo)

represents a low compute capacity domain, administrative domain 2 (grid010)

represents a mid-size domain and administrative domain 3 (aurora) represents

a high-powered, high compute capacity domain. We used the domains that had

ample bandwidth and minimum latency amongst each other, therefore those

factors are not represented in the model. Therefore, the assumption in our model

is ideal network conditions with high bandwidth availability and reasonable

amounts of latency (no connection time-outs).

� The administrative domains represent the points where the jobs enter the sys-

tem, or point of entry.

� We could not represent a wider range of hardware, which was limited by the

equipment we had access to. However, each administrative domain is relatively

di�erent from each other in terms of compute capacity. This diversity helps

build a model of a grid where many types of computers are pooled together.

2. Length of the majority of jobs (Length of process majority)

� We did not want to use a homogeneous batch of jobs of the same length (as

105

such conditions do not occur in real systems), therefore we mixed a variety of

jobs of di�erent lengths.

� The di�erent levels for this factor are 3 sets of job batches where the ratio

of short processes to medium-length processes to long processes are 70:15:15,

15:70:15 and 15:15:70 (see table 6.7).

� The length of the jobs is relative to each other. On a lightly-loaded Pentium 4

box, "long" jobs take roughly 45 minutes, "medium" jobs take 15 minutes and

"short" jobs take 5 minutes. The run-times vary according to cpu type and load

conditions.

3. Preemptive migration vs. non-preemptive migration (Checkpointing vs. no check-

pointing)

� Two systems were used, Zinc where checkpointing was available, and a control

program where checkpointing is disabled.

� While there have been previous studies of the e�ectiveness of process migration,

we want to look at how process checkpointing and migration interacts with the

other chosen factors.

4. Host selection algorithm - Zinctask vs. random placement (Placement strategy)

� The Zinctask algorithm is evaluated by comparing it against random placement.

Random placement was chosen as a control mechanism.

� Random placement is a simple approach to process placement which arbitrarily

selects hosts without discrimination. If Zinctask was ine�ective at host selection,

the results would show its performance to be nearly equal to (or much worse

than) random selection.

The factors and their associated levels are summarised in Table 6.8.

106

Label % Of Short Jobs % Of Medium Jobs % Of Long Jobs
Majority = Short 70 15 15

Majority = Medium 15 70 15
Majority = Long 15 15 70

Table 6.7: Ratios of long to medium to short jobs

Factor Levels
Point of entry aurora, grid010, frodo

Length of process majority long, medium, short
Checkpointing yes, no

Placement strategy Zinctask, random
Table 6.8: Factors studied in the throughput experiment

In our experiment runs, we have tried to assign as much jobs as possible to the admin-

istrative domains, and thus overloading some nodes.

1. During every run, administrative domains 1, 2 and 3 will each be assigned to execute

60 jobs.

2. The jobs arrive once every 60 seconds.

3. The duration of each run is 1 hour.

4. Every combination of the factors is used to generate runs. There are 4 factors, 2

of them have 3 levels and another 2 have 2 levels. Each combination is replicated

in 2 runs1. Therefore, a total of 3 × 3 × 2 × 2 × 2 = 72 runs are needed for every

combination2.

5. The order of which each run is performed is completely randomised. This is done by

shu�ing an enumerated list of runs needed to be executed, and then doing each run

following the randomised list.
1A minimum of 2 replicates is necessary to determine the sum of squares due to error if all possible

factorial interactions are considered in the model2However, since all the administrative domains need to be used simultaneously, only 24 runs were
performed as each administrative domain will each yield a throughput result on each run (hence 3 results
for each domain)

107

Another aspect of the experimental design which needs to be noted is the metric of

throughput. We are not concerned with the total system throughput (i.e., the total num-

ber of jobs completed by the entire grid), but instead we look at how many jobs each

administrative domain completes for its users while participating in the grid with other

administrative domains. For example, if Alice is a user of the Aurora domain, we want

to see how many jobs completed that Alice submitted to the grid via the administrative

domain she belongs to as a user. At the same time, Bob, who is a user in the Grid010

domain, will also submit his jobs to the grid. Each user's processes will be distributed to

any available machine connected to the grid (depending on the load distribution algorithm

used), and every machine in the grid is shared amongst all users. At the end of an hour,

Alice may have had x number of jobs completed, and Bob may have had y number of jobs

completed. Therefore, the throughput for the Aurora administrative domain is x processes

an hour and the throughout for the Grid010 domain is y processes an hour, when both are

simultaneously accepting jobs and sharing each other's resources.

We believe this is a more interesting metric than simply how many jobs the entire

system completes as a whole3, because it gives us an idea of whether or not there is a

bene�t for users who belong to particular administrative domain when their resources are

pooled together with other administrative domains in a grid.

6.4.2 Experimental Results

The results of the runs are tabulated in table 6.9. The scatter-plot of residuals (see �gure

A.1 in appendix A) show the results obtained are of a normal distribution 4. From the

univariate analysis of variance, it was found that the following combinations of factorial in-
3If we wanted to determine the total system throughput in the Alice and Bob scenario, it would be

x + y processes completed an hour4A normal distribution is required for our factorial experiment model to work

108

Process
Length

Admin.
Domain

Checkpointing No Checkpointing
Random ZincTask Random ZincTask

Majority
long
processes

Aurora 26 25 35 29
25 27 33 22

Frodo 21 20 0 18
18 24 1 27

Grid010 8 11 3 15
7 13 3 7

Majority
medium
processes

Aurora 38 38 33 44
45 41 39 37

Frodo 32 32 0 36
31 40 0 36

Grid010 17 7 2 27
11 21 1 27

Majority
short
processes

Aurora 48 53 54 50
53 52 54 47

Frodo 44 52 7 48
52 52 14 52

Grid010 34 46 34 48
28 39 16 51

Table 6.9: Process throughput experiment data (each cell contains number of processes
completed per hour for each factorial combination with 2 replications)

teractions are statistically signi�cant (we used univariate analysis of variance for statistical

signi�cance tests, see appendix A for full ANOVA table):

1. Checkpointing × Placement strategy × Point of entry

2. Length of process majority × Point of entry

3. Length of process majority × Checkpointing × Placement strategy

The following are pro�le plots of all the signi�cant interactions.

6.5 The Factors That In�uence Throughput : Discussion

The pro�le plots for the signi�cant factorial interactions reveal interesting patterns of the

e�ect of process migration on throughput. They are described in the following subsections.

109

Figure 6.3: Checkpointing × Placement Strategy × Point of Entry Interaction At Aurora

Figure 6.4: Checkpointing × Placement Strategy × Point of Entry Interaction At Grid010

6.5.1 The E�ects Of Checkpointing And Preemptive Migration

In the �rst set of factorial interactions (Checkpointing × Placement strategy × Point of

entry), �gures 6.3, 6.4 and 6.5 indicate that preemptive migration is bene�cial for the job

throughput capacity of low-powered administrative domains. By helping its jobs �nd suit-

able execution spots in foreign domains, the low-powered administrative domains could

110

Figure 6.5: Checkpointing × Placement Strategy × Point of Entry Interaction At Frodo

Figure 6.6: Length of Process Majority × Point of Entry Interaction

execute all the jobs we assigned despite the fact that they overwhelm the computing ca-

pacity of some nodes. The Frodo administrative domain was the most underpowered, thus

found most of its processes shipped to the other more powerful ones such as Aurora. This

led to the Frodo domain getting even higher throughput than the Grid010 domain despite

111

Figure 6.7: Length of Process Majority × Checkpointing × Placement Strategy for Ma-
jority Long Processes

Figure 6.8: Length of Process Majority × Checkpointing × Placement Strategy for Ma-
jority Medium Processes

being less powerful. Preemptive migration particularly helps when placement is random,

since random placement sometimes leads to bad decisions (as assigning a job to a busy host

when idles ones are available). Moving jobs preemptively helps negate those bad decisions.

For higher-powered administrative domains, preemptive migration does not seem to a�ect

112

Figure 6.9: Length of Process Majority × Checkpointing × Placement Strategy for Ma-
jority Short Processes

throughput much. This could be due to su�cient processing power available for the high-

powered domains that migration does not provide a massive improvement in throughput in

relative comparison to underpowered administrative domains that get a throughput boost

from being able to share the resources of more powerful computers in other administrative

domains. There is a slight drop in throughput for the Grid010 domain when the Zinctask

algorithm is used together with checkpointing, and an improvement when random place-

ment is used. There seems to be a a very pronounced di�erence in throughput for the

Aurora domain in �gure 6.3, but the actual divergence isn't as great as the graph suggests

(the mean yield di�erence is less than 3 jobs).

In the third set of factorial interactions (Length of process majority × Checkpointing

× Placement strategy), we can further see that checkpointing and migration helps increase

throughput for all types of jobs when placement is random. Preemptive migration makes

little di�erence on the type of processes as it performs nearly the same when Zinctask is

used. When random placement is used, preemptive migration also helps increase through-

113

put when there are more longer running jobs than shorter ones (see �gures 6.7, 6.8 and

6.9).

6.5.2 The E�ects Of The Zinctask Algorithm

The Zinctask algorithm e�ectively chooses good hosts for running jobs, as the yield for

each pro�le plot for Zinctask is consistently higher than random placement for almost

all scenarios, except for the case in �gure 6.3 where Zinctask performs slightly less than

(though almost on par with) random placement when no preemptive migration is available.

The Zinctask algorithm also performs better than random placement for processes of every

length, although there is a smaller di�erence between the two algorithms when preemptive

migration is enabled (see �gures 6.7, 6.8 and 6.9).

6.5.3 The E�ects Of Process Length

From �gure 6.6, we can see that job batches with shorter processes are completed more

than the batches with longer ones. This is consistent with logical assumption that more

shorter jobs can be �nished than longer ones in �xed time frame when there is a �nite

amount of CPU cycles that can be allotted to each one. However, in our experiment we

used a simple model to process length, thus our conclusions may not be representative

of the bigger picture of how process length distributions correlate with process migration

e�ciency and the throughput of the system.

6.5.4 The E�ects Of Host Administrative Domain Size And Power

As expected, the largest and most powerful administrative domain (Aurora) achieved the

most throughput for jobs originating from itself. Even when placement is random, the

Aurora domain performs well. This is due to the amount of processing power available

114

in the administrative domain. In the lesser administrative domains (Frodo and Grid010),

throughput drops signi�canty when there is no checkpointing and random placement. How-

ever, the use of Zinctask and preemptive process migration brings the level of throughput

up of the other administrative domains, indicating that the available CPU power of Aurora

is shared with the other domains.

6.5.5 Weaknesses Of The Experimental Model

There are several limitations to our experimental model, mainly due to limitations rising

from the feasibility of the experiments that need to be conducted. The Aurora cluster that

we needed for the experiments is being heavily used as a production system. Therefore,

we had limited time and opportunity to utilise it as exclusive computer time needed to be

booked, during that time all the current grid users could not use it. Therefore, we designed

the experiment to be as simple as possible to execute in a limited time frame to minimise

the time needed for the machines to be disconnected from other users.

The main limitation in our experiment is the model used to represent the grid. Al-

though the results derived are valid for our grid test-bed, they may not hold true for other

con�gurations. Also, network latency and tra�c were not included in the model to keep

it simple. To get a better representation of real grids, it would be better to test the al-

gorithms proposed on a wider range of hardware. In the future, perhaps Zinc could be

deployed on real grids with many users and di�erent types of equipment to corroborate

the results produced in this work.

We have also chosen a �xed e�ects model to represent levels of process length and

administrative domain capacity. Thus, our results are valid for the con�guration we used

in the experiment, but we cannot draw any general conclusions from it.

115

However, despite these limitations, the experiment does shed some light on how process

migration behaves on a sample grid implementation.

6.6 Summary

The evaluation of Zinc consists of two parts; one tested the e�ciency of wide-area process

migration and the other tested the interaction between a combination of factors that in-

�uence process throughput. These factors are the size and power of host administrative

domain, length of the majority of processes submitted, the availability of checkpointing,

and the placement strategy of processes. The placement strategy consists of comparing

our Zinctask algorithm with a random selection algorithm. From our experiments, the

following observations were obtained:

1. The migration time for processes are reasonably small, even for internet migration.

Even on a consumer-grade residential DSL connection, the computers in New York

could migrate processes with moderate-sized checkpoints (around 25 megabytes) to

a host in Malaysia in an average time of 418.7 seconds (around 7 minutes). Long-

running processes meant for grid computing tend to run for hours or even days,

making migration time negligible as long as su�cient bandwidth is available.

2. Process checkpointing and migration improve throughput when there lacks a good

placement strategy. This improvement is greater for longer processes over shorter

ones.

3. The Zinctask algorithm helps improve throughput compared to random placement.

4. When Zinctask is used, throughput is not a�ected much by process checkpointing.

5. Resource-rich administrative domains does not seem to bene�t much with respect

116

to throughput from either process migration or the Zinctask algorithm. In contrast,

the throughput improvements are more pronounced for administrative domains with

fewer computing resources.

With Zinc, we achieved most of our design goals satisfactorily. The Zinc schedulers suc-

cessfully manage and distribute processes in a decentralised fashion. The Zinc-based Linux

kernel provides su�cient transparency for single process migration. However, the issue of

handling IPC among distributed processes and eliminating the remaining residual depen-

dencies is a topic for future work.

117

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Introduction

In this thesis, we have explored the potential of creating a grid operating system. A grid

operating system incorporates many of the features of distributed operating systems, but

does not assume full control over all the resources. The assumptions that grid middleware

need to work with such as time-limited availability of remote resources are supported by

features built into the underlying system. In our research, our focus has been distributed

process management for grid processes. For our experiments, we created a grid test-bed

consisting of 4 administrative domains, each with a di�erent number of nodes and compute

power.

In this chapter, we recap our objectives in section 7.2 as well as evaluate our design

goals for Zinc in section 7.3. We will revisit the contributions of this thesis in section 7.4

and future work is discussed in section 7.5. A �nal summary is provided in section 7.6.

7.2 Objectives Revisited

7.2.1 Integrating Process Checkpointing And Grid Process Scheduling

Into The Linux Kernel

We sucessfully ported and integrated the the EPCKPT [61] patch to implement process

checkpointing in version 2.4.22 of the Linux kernel. We also developed a kernelspace

scheduler with the Linux kernel developers [32] to provide local process scheduling that is

118

optimised to handle grid processes.

7.2.2 Creating A Prototype Grid Process Management System

Previous work on distributed systems have enabled us to implement many of the technolo-

gies needed to create Zinc, namely resource discovery, process checkpointing and process

migration (see [51] for a comprehensive survey on process checkpointing and migration).

We adopted the Name Dropper resource discovery algorithm [29] for our grid information

system and we also developed an algorithm for process placement called Zinctask, which

extends upon placement algorithms based on run queue [19] by adding consideration for

memory usage, bandwidth, latency and information staleness in our host selection algo-

rithm. All these algorithms have allowed us to successfully implement Zinc, and meet our

design goals satisfactorily.

7.2.3 Enabling Wide-Area Process Migration

We measured the time taken for processes to migrate processes over the internet, and

found that it was adequately fast even under less-than-optimal bandwidth conditions. A

25 megabyte checkpoint was transferred from Penang, Malaysia to New York, USA and

restored in under 8 minutes. This indicates wide-area process migration is feasible (as

the migration times are short compared to the typical run-times of CPU-intensive grid

processes) as long as the processes do not require IPC.

7.2.4 Investigating The Factors In�uencing Throughput In The Grid OS

In our investigations into the e�ect of process migration on job throughput on our test-bed

grid, we discovered the following:

119

1. Preemptive process migration improves throughput compared to non-preemptive mi-

gration when initial placement of processes are random.

2. The Zinctask algorithm gives better throughput than random placement in almost

all cases, and on par with random placement when it does not.

3. Preemptive process migration does not a�ect system throughput signi�cantly (for

better or worse) when the Zinctask algorithm is used.

4. Both preemptive process migration and the Zinctask algorithm help low-powered

administrative domains increase their throughput.

However, we made the assumption that processes are atomic in nature (do not rely on IPC),

and our experimental model is a simple �xed-e�ects full-factorial model with the levels for

the factors being discrete values that represent a larger range of values. Therefore, due to

the assumptions and simpli�cation of the representative model, these conclusions are only

valid for our test-bed, and further research is needed for a more generalised conclusion.

In this thesis, we do not compare Zinc to other similar systems such as Condor or

MOSIX, as it would be too coarse-grained a comparison and would not provide meaningful

results within the context of our research objectives.

7.3 Evaluation Of Design Goals

7.3.1 Transparency And Residual Dependencies

Transparency and residual dependencies are inter-related; the more residual dependencies

that are eliminated or overcome, the more transparent the process migration mechanism

becomes. Looking at the implementation of Zinc, we have succeeded in providing a degree

of transparency for migrating processes:

120

1. Processes stop and restart on a foreign node correctly, with the virtual memory area

restored completely.

2. No special compilation steps are necessary for a program to be checkpointable, nor

is there any requirement for a special programming language or library.

3. All �les in use are transferred together with the checkpoint, and will be found by the

program when restarting.

With the above, we have provided location transparency for processors and a degree

of relocation transparency for processes. However, there are weaknesses to the process

migration facility which Zinc provides:

1. The operating system environment on a migrated host is going to be di�erent from

the home node. Thus, if the program accessed any OS-speci�c or hardware-speci�c

information on its home node (such as the amount of installed RAM), that informa-

tion will be stale.

2. Inter-process communication will not work across migrated nodes.

3. The system call getpid() will return a di�erent PID for a migrated process, since

the C library function call does not refer to the grid process id.

4. It is currently not possible for two migrated processes to write to the same �le, as

distributed �lesystem access is not implemented within the scope of this project.

Addressing these weaknesses remain a challenging problem. There is not much that can be

done about hardware speci�cations changing when a process is migrated, since this will be

one of the artifacts of process migration (unless a purely homogeneous distributed system

is constructed). The PID problem can be addressed with PID reservation, though it raises

121

a new issue of synchronising reservations throughout the grid. The possible solution to IPC

and shared �le access is addressed in the next chapter (see section 7.5 on future work).

7.3.2 Throughput

A combination of both preemptive migration and the Zinctask algorithm help increase job

throughput rates for the majority of scenarios presented in our experimental model. Both

the Zinctask algorithm and preemptive process migration is bene�cial to improving the

throughput of small or low-powered administrative domains. When Zinctask is used for

placement, using preemptive migration neither helps nor hurts throughput signi�cantly in

our grid test-bed. Zinctask performs consistently well in the majority of the test cases in

this experiment, giving a better throughput yield. When Zinctask is not used and place-

ment is random, we found that preemptive process migration helps improve throughput

signi�cantly. This is especially true if the system has more longer-running processes than

shorter ones. This �nding complements Harchol-Balter and Downey's assertion that pro-

cess migration helps the performance of longer-running processes [28]. Our design goal

of devising algorithms that deliver better throughput is a success on our grid test-bed.

However, further work is needed to con�rm if these algorithms perform well in other con-

�gurations.

7.3.3 Decentralisation

The design of Zinc creates two levels of structure within the distributed system. Inside

an administrative domain, the Zinc userspace scheduler is the centre of all grid scheduling

activity. All the nodes within an administrative report to only one scheduler, hence the

design is centralised. This limits the size of which a particular administrative domain can

grow, since the central scheduler presents a bottleneck. For our grid test-bed, the largest

122

administrative domain consists of a 16-node cluster, which stills performs well with no

apparent bottleneck. However, if larger administrative domains need to be constructed,

this single-scheduler design may need to be replaced with multiple schedulers balancing

the load between themselves.

Across administrative domains, there is no central authority which coordinates activity.

Each and every administrative domain is its own independent entity which communicate

with every other administrative domain. Since the Name Dropper algorithm requires

that a new node only announce itself to one other connected node, it is possible to add

administrative domains to the system by simply connecting it to one existing member of

the grid. Therefore, it is possible to �grow� the grid in a decentralised fashion by adding

administrative domains, and information propagation scales very well due to the e�ciency

of the resource discovery algorithms.

7.3.4 Adaptability To Resource Pool

The resource discovery algorithm is primarily responsible for adapting the system to vary-

ing resources. Since the Name Dropper algorithm works very e�ciently, it is possible for

each scheduler to keep an almost-current snapshot of the state of the entire system. When

new hosts are added to the system, the new information is propagated throughout all the

nodes quickly. This information is vital for the scheduler to make decisions for process

migration and placement, and to request resources from foreign administrative domains.

7.4 Contributions Revisited

The following are the contributions of our thesis:

1. Adding the concept of grid process management to GNU/Linux as this func-

123

tionality is required for a grid operating system. To achieve this, we needed to have

process migration as a feature in Linux. The underpinnings of process migration was

facilitated by existing software called EPCKPT which was updated to to be used

with a recent Linux kernel.

2. The Zinc program, a proof-of-concept implementation of grid operating system

facilities comprising a distributed scheduler and a kernelspace scheduler which ben-

e�ts the throughput of grid processes. These programs utilise the process migration

capabilities of the modi�ed Linux kernel and creates a load distribution mechanism

for the grid operating system.

3. The Zinctask algorithm is used for placement of processes and is designed to

maximise throughput. This algorithm was found to be robust performance-wise

when compared to random placement.

4. Exploring the factors which in�uence process throughput in a grid and their

factorial interactions. The factors are the availability of preemptive processes migra-

tion, the placement strategy of processes, the con�guration of the machines in the

grid and also the length of jobs that are submitted to the grid.

7.5 Future Work

There is much work that needs to be done in producing an actual working grid operating

system. In this section, we outline several areas which can be further researched upon in

realising a usable grid operating system.

124

7.5.1 Grid Process Management

In our design of Zinc, we have not included support for inter-process communication,

namely sockets, Sys V shared memory and Sys V semaphores. Thus, our process migration

mechanism is simpli�ed to only work with �atomic� processes which do not communicate

with other processes. The reason for this is a weakness in the implementation, though

there are a few recent checkpointing implementations for Linux which do support some IPC

such as the migration of sockets [86]. However, the following issues arise when migrating

processes which perform IPC:

1. The possibility that residual dependencies will occur between two or more hosts when

processes are migrated from a particular machine but need to communicate with other

processes on that machine. If migration occurs multiple times, the problem escalates.

Residual dependencies can be handled reasonably well if the distance between the

hosts are su�ciently short, thus avoiding latency problems. However, there needs

to be a method of de�ning virtual boundaries where processes should not migrate

across if they are communicating with processes in a particular machine.

2. A grid-wide namespace is required for all IPC between processes that migrate. Tra-

ditionally, TCP sockets use an IP address and a port number, Unix sockets use

a �lename and Sys V IPC such as semaphores and shared memory use a unique

numerical key. If processes were allowed to do IPC across nodes, and even across ad-

ministrative domains, we would need a global namespace for each of these facilities.

TCP sockets already have the bene�t of TCP/IP naming, and the others could be

implemented via a grid �lesystem (see next section).

125

7.5.2 Grid Filesystems

An active area of research is distributed �lesystems, and much of the state-of-the-art can

be applied to assist the implementation of a grid �lesystem. A grid �lesystem would

support features like disconnected operations (such as found in AFS and Coda), caching

and distribution of large data sets, and opportunistic data movement [78]. However, the

most interesting feature that would come from a globally accessible �lesystem would be the

availability of a global namespace. One of the strengths of Unix-like operating systems is

that many things are abstracted as �les, and thus the �lesystem could be used to implement

namespaces for IPC such as Sys V semaphores. Sys V keys could be published globally via

the �lesystem, and thus enabling distributed processes to perform IPC. It is also possible

to share Unix sockets, kernel information (via a distributed /proc interface, for example)

and other abstractions via the �lesystem interface, such as what is done by the Plan 9

operating system.

7.5.3 Security

From a security standpoint, allowing binary code to migrate from another administrative

domain to your own and allowing it to run might seem like a frightening prospect if it

cannot be trusted entirely. Unix-like systems o�er various degrees of control over what

a running process can or cannot do (such as Unix permissions and POSIX access control

lists), and it is mostly su�cient for most purposes. However, it would be safer for the host

operating system to virtualise an execution environment for a guest process, such as via

chroot or FreeBSD's jail [36].

126

7.6 Summary

Preemptive process migration is a useful facility to have in a grid operating system. Be-

sides the throughput boost when there is a lack of a good placement strategy, it does

not adversely a�ect the system performance as far as we have seen. Therefore, consider-

ing the other advantages of having preemptive process migration (administrative domain

autonomy, mobile resource location, etc.), it is therefore bene�cial to have this facility

available.

Grid operating systems provide a fresh look at solving many of the problems in grid

computing. If resource allocation and usage are handled transparently at the OS level, it

will reduce the application programmers' burden of working with many of the idiosyncrasies

of current grid computing middleware. However, grid operating systems are not meant to

eliminate the need for grid software such as Globus, only to make it possible to simplify it

and complement the functionality provided by grid middleware. The Linux checkpointing

patches, the high throughput kernel scheduler, the Zinc scheduling and load distribution

software provides a starting point for which a complete grid operating system can be

constructed.

From our experience doing this research, we suggest that it is worth supporting grid

computing at an operating system level to help implement a simple yet powerful environ-

ment for grid systems to run on. Just as traditional operating systems when �rst introduced

helped make computer hardware considerably easier to use, to program for, more coher-

ent and more transparent, we hope that grid operating systems will do the same for grid

computing.

127

REFERENCES

[1] David P. Anderson, Je� Cobb, Eric Korpela, Matt Lebofsky, and Dan Werthimer.
SETI@home: An Experiment in Public-resource Computing. Commun. ACM, 45(11):
56�61, 2002.

[2] Amnon Barak, Shai Guday, and Richard G. Wheeler. The MOSIX Distributed Operat-
ing System: Load Balancing for UNIX. Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 1993. ISBN 0387566635.

[3] Amnon Barak and Oren La'adan. The MOSIX Multicomputer Operating System for
High Performance Cluster Computing. Future Generation Computer Systems, 13(4�5):
361�372, 1998.

[4] Amnon Barak, Amnon Shiloh, and Lior Amar. An Organizational Grid of Federated
MOSIX Clusters. In Proc. 5th IEEE International Symposium on Cluster Computing
and the Grid (CCGrid), pages 350�357. IEEE Computer Society, 2005.

[5] Francine Berman. High Performance Schedulers. In Ian Foster and Carl Kesselman,
editors, The Grid: Blueprint for a New Computing Infrastructure. Morgan Kaufmann,
2003.

[6] Daniel P. Bovet and Marco Cesati. Understanding the Linux Kernel. O'Reilly &
Associates, Inc., Sebastopol, CA, 2nd edition, 2002.

[7] Rajkumar Buyya, David Abramson, Jonathan Giddy, and Heinz Stockinger. Economic
Models for Resource Management and Scheduling in Grid Computing. Concurrency
and Computation: Practice and Experience, 14(13-15):1507�1542, 2002.

[8] Rajkumar Buyya, Jonathan Giddy, and David Abramson. An Evaluation of Economy-
based Resource Trading and Scheduling on Computational Power Grids for Parameter
Sweep Applications. In Proceedings of the 2nd International Workshop on Active Mid-
dleware Services (AMS 2000), Pittsburgh, USA, 2000. Kluwer Academic Press.

[9] Thomas L. Casavant and Jon G. Kuhl. A Taxonomy of Scheduling in General-Purpose
Distributed Computing Systems. IEEE Trans. Softw. Eng., 14(2):141�154, 1988.

[10] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul, Christian
Limpach, Ian Pratt, and Andrew War�eld. Live Migration of Virtual Machines. In
Proceedings of USENIX NSDI 2005, 2005.

[11] Sivarama P. Dandamudi. Performance Impact of Scheduling Discipline on Adaptive
Load Sharing in Homogeneous Distributed Systems. In ICDCS '95: Proceedings of the
15th International Conference on Distributed Computing Systems (ICDCS'95), pages
484�492, Washington, DC, USA, 1995. IEEE Computer Society.

[12] Sivarama P. Dandamudi and K. C. Michael Lo. A Hierarchical Load Sharing Policy for
Distributed Systems. InMASCOTS '97: Proceedings of the 5th International Workshop
on Modeling, Analysis, and Simulation of Computer and Telecommunications Systems,
pages 3�10, Washington, DC, USA, 1997. IEEE Computer Society.

128

[13] Fred Douglis and John Ousterhout. Transparent Process Migration: Design Alterna-
tives and the Sprite Implementation. Softw. Pract. Exper., 21(8):757�785, 1991.

[14] Fred Douglis, John K. Ousterhout, M. Frans Kaashoek, and Andrew S. Tanenbaum.
A Comparison of Two Distributed Systems: Amoeba and Sprite. Computing Systems,
4(4):353�384, 1991.

[15] Boris Dragovic, Keir Fraser, Steve Hand, Tim Harris, Alex Ho, Ian Pratt, Andrew
War�eld, Paul Barham, and Rolf Neugebauer. Xen and the Art of Virtualization. In
Proceedings of the ACM Symposium on Operating Systems Principles, October 2003.

[16] Derek L. Eager, Edward D. Lazowska, and John Zahorjan. The Limited Performance
Bene�ts of Migrating Active Processes for Load Sharing. In SIGMETRICS '88: Pro-
ceedings of the 1988 ACM SIGMETRICS conference on Measurement and modeling of
computer systems, pages 63�72, New York, NY, USA, 1988. ACM Press.

[17] M. Ra³it Eskicio§lu. Design Issues of Process Migration Facilities in Distributed
Systems. IEEE Technical Commitee on Operating Systems Newsletter, pages 3�13,
1989.

[18] Adam J. Ferrari, Stephen J. Chapin, and Andrew S. Grimshaw. Process Introspection:
A Heterogeneous Checkpoint/Restart Mechanism Based on Automatic Code Modi�-
cation. Technical Report CS-97-05, Department of Computer Science, University of
Virginia, March 1997.

[19] Domenico Ferrari and Songnian Zhou. An Empirical Investigation of Load Indices for
Load Balancing Applications. In Performance '87: Proceedings of the 12th IFIP WG
7.3 International Symposium on Computer Performance Modelling, Measurement and
Evaluation, pages 515�528, 1987.

[20] Ian Foster and Adriana Iamnitchi. On Death, Taxes, and the Convergence of Peer-
to-Peer and Grid Computing. In 2nd International Workshop on Peer-to-Peer Systems
(IPTPS'03), Berkeley, CA, February 2003.

[21] Ian Foster and Carl Kesselman. Globus: A Metacomputing Infrastructure Toolkit.
The International Journal of Supercomputer Applications and High Performance Com-
puting, 11(2):115�128, Summer 1997.

[22] Ian Foster and Carl Kesselman. Computational Grids. In Ian Foster and Carl Kessel-
man, editors, The Grid: Blueprint for a New Computing Infrastructure. Morgan Kauf-
mann, 2003.

[23] Ian Foster, Carl Kesselman, and Steven Tuecke. The Anatomy of the Grid : Enabling
Scalable Virtual Organizations. International Journal Of High Performance Computing
Applications, 15(3):200�222, 2001.

[24] Richard P. Gabriel. Lisp: Good News, Bad News, How to Win Big, 1991. URL
http://www.dreamsongs.com/WIB.html. Accessed 30th June 2006.

[25] Andrze Goscinski. Distributed Operating Systems: The Logical Design. Addison-
Wesley Longman Publishing Co., Inc., 1991. ISBN 0201417049.

[26] Andrew S. Grimshaw and William A. Wulf. Legion � A View From 50,000 Feet. In
HPDC '96: Proceedings of the High Performance Distributed Computing (HPDC '96),
Washington, DC, USA, 1996. IEEE Computer Society. ISBN 0-8186-7582-9.

129

http://www.dreamsongs.com/WIB.html

[27] Andrew S. Grimshaw, William A. Wulf, James C. French, Alfred C. Weaver, and
Paul F. Reynolds Jr. Legion: The Next logical Step Toward a Nationwide Virtual
Computer. Technical Report CS-94-21, University of Virginia, August 1994.

[28] Mor Harchol-Balter and Allen B. Downey. Exploiting process lifetime distributions
for dynamic load balancing. ACM Trans. Comput. Syst., 15(3):253�285, 1997.

[29] Mor Harchol-Balter, Tom Leighton, and Daniel Lewin. Resource Discovery in Dis-
tributed Networks. In PODC '99: Proceedings of the Eighteenth Annual ACM Sympo-
sium on Principles of Distributed Computing, pages 229�237. ACM Press, 1999.

[30] Sandra Hedetniemi, Stephen Hedetniemi, and Arthur Liestman. A Survey of Gossiping
and Broadcasting in Communications Networks. Networks, 18:319�349, 1988.

[31] Philip Homburg, Maarten van Steen, and Andrew S. Tanenbaum. An Architecture
for a Wide Area Distributed System. In EW 7: Proceedings of the 7th workshop on
ACM SIGOPS European workshop, pages 75�82. ACM Press, 1996.

[32] Nur Hussein, Constantine Kolivas, Fazilah Haron, and Chan Huah Yong. Extend-
ing The Linux Operating System For Grid Computing. In Proceedings of the APAN
Network Research Workshop, July 2004.

[33] Adriana Iamnitchi and Ian Foster. On Fully Decentralized Resource Discovery in
Grid Environments. In GRID '01: Proceedings of the Second International Workshop
on Grid Computing, pages 51�62. Springer-Verlag, 2001. ISBN 3-540-42949-2.

[34] Sun Microsystems Inc. System and Network Administration, March 1990. Part Num-
ber 800-3805-10.

[35] M. Frans Kaashoek, Robbert van Renesse, Hans van Staveren, and Andrew S. Tanen-
baum. FLIP: An Internetwork Protocol for Supporting Distributed Systems. ACM
Trans. Comput. Syst., 11(1):73�106, 1993.

[36] Poul-Henning Kamp and Robert N. M. Watson. Jails: Con�ning the Omnipotent
Root. In Proceedings of 2nd International System Administration and Networking Con-
ference (SANE2000), Maastricht, The Netherlands, May 2000.

[37] Nirav H. Kapadia, José A. B. Fortes, and Carla E. Brodley. Predictive Application-
Performance Modeling in a Computational Grid Environment. In HPDC '99: Proceed-
ings of the The Eighth IEEE International Symposium on High Performance Distributed
Computing, page 6, Washington, DC, USA, 1999. IEEE Computer Society. ISBN 0-
7695-0287-3.

[38] James J. Kistler and M. Satyanarayanan. Disconnected Operation in the Coda File
System. In SOSP '91: Proceedings of the thirteenth ACM symposium on Operating
systems principles, pages 213�225, New York, NY, USA, 1991. ACM Press. ISBN
0-89791-447-3.

[39] Phillip Krueger and Miron Livny. The Diverse Objectives of Distributed Scheduling
Policies. In Proc. Seventh Int'l Conf. Distributed Computing Systems, pages 242�249,
Los Alamitos, CA, USA, 1987. IEEE CS Press.

[40] Phillip Krueger and Miron Livny. A Comparison of Preemptive and Non-Preemptive
Load Distributing. In 8th International Conference on Distributed Computing Systems,
pages 123�130, San Jose, CA, June 1988.

130

[41] Krzysztof Kurowski, Jarek Nabrzyski, Ariel Oleksiak, and Jan W¦glarz. Multicriteria
Aspects of Grid Resource Management. In Jarek Nabrzyski, Jennifer M. Schopf, and
Jan W¦glarz, editors, Grid Resource Management: State of the Art and Future Trends.
Kluwer Academic Publishers, 2003.

[42] Krzysztof Kurowski, Jarek Nabrzyski, and Juliusz Pukacki. User Preference Driven
Multiobjective Resource Management in Grid Environments. In CCGRID '01: Pro-
ceedings of the 1st International Symposium on Cluster Computing and the Grid, page
114, Washington, DC, USA, 2001. IEEE Computer Society. ISBN 0-7695-1010-8.

[43] Byoung-Dai Lee and Jennifer M. Schopf. Run-Time Prediction of Parallel Applications
on Shared Environments. In Proceedings of the IEEE International Conference on
Cluster Computing (CLUSTER'03), page 487, Washington, DC, USA, 2003. IEEE
Computer Society.

[44] Will Leland and Teunis J. Ott. Load-balancing Heuristics and Process Behavior.
In SIGMETRICS '86/PERFORMANCE '86: Proceedings of the 1986 ACM SIGMET-
RICS joint international conference on Computer performance modelling, measurement
and evaluation, pages 54�69, New York, NY, USA, 1986. ACM Press. ISBN 0-89791-
184-9.

[45] Jin Liang, Klara Nahrstedt, and Yuanyuan Zhou. Adaptive Multi-resource Prediction
in Distributed Resource Sharing Environment. In Proc. 4th IEEE International Sym-
posium on Cluster Computing and the Grid (CCGrid), pages 293�300. IEEE Computer
Society, 2004.

[46] Michael Litzkow, Miron Livny, and Matthew Mutka. Condor - A Hunter of Idle Work-
stations. In Proceedings of the 8th International Conference of Distributed Computing
Systems, June 1988.

[47] Michael Litzkow, Todd Tannenbaum, Jim Basney, and Miron Livny. Checkpoint and
Migration of UNIX Processes in the Condor Distributed Processing System. Techni-
cal Report UW-CS-TR-1346, University of Wisconsin - Madison Computer Sciences
Department, April 1997.

[48] Miron Livny, Jim Basney, Rajesh Raman, and Todd Tannenbaum. Mechanisms for
High Throughput Computing. SPEEDUP Journal, 11(1), June 1997.

[49] Miron Livny and Rajesh Raman. High-throughput Resource Management. In Ian
Foster and Carl Kesselman, editors, The Grid: Blueprint for a New Computing Infras-
tructure. Morgan Kaufmann, 2003.

[50] Marek Mika, Grzegorz Waligóra, and Jan W¦glarz. A Metaheuristic Approach to
Scheduling Work�ow Jobs on a Grid. In Jarek Nabrzyski, Jennifer M. Schopf, and
Jan W¦glarz, editors, Grid Resource Management: State of the Art and Future Trends.
Kluwer Academic Publishers, 2003.

[51] Dejan S. Miloji£i�c, Fred Douglis, Yves Paindaveine, Richard Wheeler, and Songnian
Zhou. Process Migration. ACM Comput. Surv., 32(3):241�299, 2000.

[52] Dejan S. Miloji£i�c, Peter Giese, and Wolfgang Zint. Experiences with Load Distribu-
tion on Top of the Mach Microkernel. In USENIX Experiences with Distributed and
Multiprocessor Systems (SEDMS IV), pages 19�36, 1993.

131

[53] Andrey Mirtchovski, Rob Simmonds, and Ronald Minnich. Plan 9 � An Integrated
Approach to Grid Computing. In IPDPS 2004 : 18th International Parallel and Dis-
tributed Processing Symposium CD-ROM / Abstracts Proceedings. IEEE Computer So-
ciety, April 2004. ISBN 0-7695-2132-0.

[54] Ingo Molnar. [announce] [patch] ultra-scalable o(1) smp and up scheduler. [Online
posting]. Linux Kernel Mailing List, 2 January 2002. URL http://lkml.org/lkml/2002/
1/3/287.

[55] Sape J. Mullender, Guido van Rossum, Andrew S. Tanenbaum, Robbert van Renesse,
and Hans van Staveren. Amoeba: A Distributed Operating System for the 1990s. IEEE
Computer, 23(5):44�53, 1990.

[56] Gary Nutt. Operating Systems: A Modern Perspective. Addison-Wesley Longman
Publishing Co., Inc., 2nd edition, 2000.

[57] John K. Ousterhout, Andrew R. Cherenson, Fred Douglis, Michael N. Nelson, and
Brent B. Welch. The Sprite Network Operating System. Computer, 21(2):23�36, 1988.

[58] Pradeep Padala and Joseph N. Wilson. GridOS: Operating System Services for Grid
Architectures. In Proceedings of the International Conference On High Performance
Computing (HiPC'03), December 2003.

[59] Brian Pawlowski, Chet Juszczak, Peter Staubach, Carl Smith, Diane Lebel, and Dave
Hitz. NFS Version 3: Design and Implementation. In USENIX Summer, pages 137�152,
1994.

[60] Rob Pike, Dave Presotto, Sean Dorward, Bob Flandrena, Ken Thompson, Howard
Trickey, and Phil Winterbottom. Plan 9 from Bell Labs. Computing Systems, 8(3):
221�254, Summer 1995.

[61] Eduardo Pinheiro. Truly-Transparent Checkpointing of Parallel Applications, 23
September 2002. URL http://www.research.rutgers.edu/∼edpin/epckpt/paper_html/.
Accessed 30th June 2006.

[62] Rajesh Raman, Miron Livny, and Marvin Solomon. Matchmaking: Distributed Re-
source Management for High Throughput Computing. In Proceedings of the Sev-
enth IEEE International Symposium on High Performance Distributed Computing
(HPDC7), Chicago, IL, July 1998.

[63] Eric S. Raymond, editor. The New Hacker's Dictionary. The MIT Press, 3rd edition,
1996.

[64] Michael Richmond and Michael Hitchens. A New Process Migration Algorithm.
SIGOPS Operating Systems Review, 31(1):31�42, 1997.

[65] Russel Sandberg, David Goldberg, Steve Kleiman, Dan Walsh, and Bob Lyon. Design
and Implementation of the Sun Network Filesystem. In Proc. Summer 1985 USENIX
Conf., pages 119�130, Portland OR (USA), 1985.

[66] Mahadev Satyanarayanan, James J. Kistler, Puneet Kumar, Maria E. Okasaki,
Ellen H. Siegel, and David C. Steere. Coda: A Highly Available File System for a
Distributed Workstation Environment. IEEE Trans. Comput., 39(4):447�459, 1990.

[67] Jennifer M. Schopf. Ten Actions When Grid Scheduling. In Jarek Nabrzyski, Jennifer
M. Schopf, and Jan W¦glarz, editors, Grid Resource Management: State of the Art and
Future Trends. Kluwer Academic Publishers, 2003.

132

http://lkml.org/lkml/2002/1/3/287
http://lkml.org/lkml/2002/1/3/287
http://www.research.rutgers.edu/~edpin/epckpt/paper_html/

[68] Michael Shirts and Vijay Pande. Screen Savers of the World Unite! Science, 290,
2000.

[69] Niranjan G. Shivaratri, Phillip Krueger, and Mukesh Singhal. Load distributing for
locally distributed systems. Computer, 25(12):33�44, 1992.

[70] Chris Steketee, Weiping Zhu, and Philip Moseley. Implementation of Process Migra-
tion in Amoeba. In International Conference on Distributed Computing Systems, pages
194�201, 1994.

[71] Volker Strumpen and Balkrishna Ramkumar. Portable Checkpointing for Heteroge-
neous Architectures. In Dimiter R. Avresky and David R. Kaeli, editors, Fault-Tolerant
Parallel and Distributed Systems. Kluwer Academic Press, 1998.

[72] Atsuko Takefusa, Satoshi Matsuoka, Henri Casanova, and Francine Berman. A Study
of Deadline Scheduling for Client-Server Systems on the Computational Grid. In HPDC
'01: Proceedings of the 10th IEEE International Symposium on High Performance Dis-
tributed Computing (HPDC-10'01), page 406, Washington, DC, USA, 2001. IEEE Com-
puter Society.

[73] Andrew S. Tanenbaum and Sape J. Mullender. An Overview of the Amoeba Dis-
tributed Operating System. SIGOPS Oper. Syst. Rev., 15(3):51�64, 1981.

[74] Andrew S. Tanenbaum and Maarten Van Steen. Distributed Systems � Principles and
Paradigms. Prentice-Hall, Upper Saddle River, New Jersey, 2002.

[75] Andrew S. Tanenbaum and Robbert van Renesse. Distributed Operating Systems.
Computing Survey, 17(4):419�470, 1985.

[76] Andrew S. Tanenbaum, Robbert van Renesse, Hans van Staveren, Gregory J. Sharp,
and Sape J. Mullender. Experiences with the Amoeba Distributed Operating System.
Commun. ACM, 33(12):46�63, 1990.

[77] Andrew S. Tanenbaum and Albert S. Woodhull. Operating Systems (2nd ed.): Design
and Implementation. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1997. ISBN
0-13-638677-6.

[78] Douglas Thain, Jim Basney, Se-Chang Son, and Miron Livny. The Kangaroo Approach
to Data Movement on the Grid. In Proceedings of the Tenth (IEEE) Symposium on
High Performance Distributed Computing (HPDC10), San Francisco, CA, August 2001.

[79] Marvin M. Theimer and Barry Hayes. Heterogeneous Process Migration by Recom-
pilation. In IEEE 11th International Conference on Distributed Computing Systems,
pages 18�25. IEEE CS Press, 1991.

[80] Mark Wahl, Tim Howes, and Steve Kille. Lightweight Directory Access Protocol (v3).
Internet Engineering Task Force RFC2251, December 1997. URL http://www.ietf.org/
rfc/rfc2251.txt.

[81] Yi-Min Wang, Yennun Huang, Kiem-Phong Vo, Pi-Yu Chung, and Chandra Kintala.
Checkpointing and its applications. In FTCS '95: Proceedings of the Twenty-Fifth
International Symposium on Fault-Tolerant Computing, pages 22�31, Washington, DC,
USA, 1995. IEEE Computer Society.

[82] Yung-Terng Wang and Robert J.T. Morris. Load Sharing in Distributed Systems.
IEEE Transactions on Computers, 34(3):204�216, 1984.

133

http://www.ietf.org/rfc/rfc2251.txt
http://www.ietf.org/rfc/rfc2251.txt

[83] Lingyun Yang, Ian Foster, and Jennifer M. Schopf. Homeostatic and Tendency-Based
CPU Load Predictions. In IPDPS '03: Proceedings of the 17th International Symposium
on Parallel and Distributed Processing, Washington, DC, USA, 2003. IEEE Computer
Society.

[84] Wengyik Yeong, Tim Howes, and Steve Kille. Lightweight Directory Access Protocol.
Internet Engineering Task Force RFC1777, March 1995. URL http://www.ietf.org/rfc/
rfc1777.txt.

[85] E. Zayas. Attacking the Process Migration Bottleneck. In SOSP '87: Proceedings
of the eleventh ACM Symposium on Operating systems principles, pages 13�24. ACM
Press, 1987.

[86] Hua Zhong and Jason Nieh. CRAK: Linux Checkpoint / Restart as a Kernel Module.
Technical Report CUCS-014-01, Department of Computer Science, Columbia Univer-
sity, November 2001.

[87] Songnian Zhou. A Trace-Driven Simulation Study of Dynamic Load Balancing. IEEE
Trans. Softw. Eng., 14(9):1327�1341, 1988.

134

http://www.ietf.org/rfc/rfc1777.txt
http://www.ietf.org/rfc/rfc1777.txt

LIST OF PUBLICATIONS

[1] Nur Hussein, Constantine Kolivas, Fazilah Haron, and Chan Huah Yong. Extend-
ing The Linux Operating System For Grid Computing. In Proceedings of the APAN
Network Research Workshop, July 2004.

135

APPENDICES

APPENDIX A

UNIVARIATE ANOVA OF RESULTS

Figure A.1: Scatterplot of Standardised Residuals vs. Yield

Value Label N

Length of process majority
1 Long 24
2 Medium 24
3 Short 24

Checkpointing 1 Yes 36
2 No 36

Placement strategy 1 Random 36
2 Zinctask 36

Point of entry
1 Aurora 24
2 Frodo 24
3 Grid010 24

Table A.1: Between-Subjects factors

137

Dependent variable: Yield
Source Type III

Sum of
Squares

df Mean
Square

F Sig.

Corrected Model 19297.611(a) 35 551.360 31.357 .000
Intercept 59973.389 1 59973.389 3410.809 .000
LENGTH 7883.861 2 3941.931 224.186 .000
CHECK 470.222 1 470.222 26.742 .000
STRATEGY 1701.389 1 1701.389 96.761 .000
ENTRY 4662.028 2 2331.014 132.570 .000
LENGTH * CHECK 55.861 2 27.931 1.588 .218
LENGTH * STRATEGY 221.861 2 110.931 6.309 .004
CHECK * STRATEGY 800.000 1 800.000 45.498 .000
LENGTH * CHECK *
STRATEGY

205.750 2 102.875 5.851 .006

LENGTH * ENTRY 277.972 4 69.493 3.952 .009
CHECK * ENTRY 867.861 2 433.931 24.679 .000
LENGTH * CHECK * EN-
TRY

113.306 4 28.326 1.611 .193

STRATEGY * ENTRY 1182.694 2 591.347 33.631 .000
LENGTH * STRATEGY *
ENTRY

48.806 4 12.201 .694 .601

CHECK * STRATEGY * EN-
TRY

753.083 2 376.542 21.415 .000

LENGTH * CHECK *
STRATEGY * ENTRY

52.917 4 13.229 .752 .563

Error 633.000 36 17.583
Total 79904.000 72
Corrected Total 19930.611 71
a R Squared = .968 (Adjusted R Squared = .937)

Table A.2: Tests of between-subjects e�ects

A signi�cance value of less than 0.05 indicates a stastistically signi�cant interaction.

Therefore, only those interactions are considered for further analysis. Interactions which

includes factors in a larger set of signi�cant interactions are also not considered.

138

	Front Matter
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Abstrak
	Abstract

	Main Chapters
	1 Introduction
	1.1 Concerning Grid Computing
	1.2 Research Motivation
	1.2.1 Investigating The Factors That Influence Job Throughput
	1.2.2 Introducing Distributed Process Management Support Into GNU/Linux
	1.2.3 Reducing Cruft
	1.2.4 Enabling Internet Computing

	1.3 Research Objectives
	1.3.1 Integrating Process Checkpointing And Grid Process Scheduling Into The Linux Kernel
	1.3.2 Creating A Prototype Grid Process Management System
	1.3.3 Enabling Wide-Area Process Migration
	1.3.4 Investigating The Factors Influencing Throughput In The Grid OS

	1.4 Scope Of Research
	1.5 Contributions
	1.6 Summary And Organisation Of Thesis

	2 Related Work
	2.1 Introduction
	2.2 The Grid Environment
	2.3 Operating Systems Support For Grid Computing
	2.3.1 The Centralised/Local Operating System
	2.3.2 The Network Operating System
	2.3.3 The Distributed Operating System
	2.3.4 The Grid Operating System

	2.4 Resource Discovery
	2.5 Grid Scheduling Stages
	2.6 Distributed Scheduling Algorithms
	2.6.1 Local and Global Scheduling
	2.6.2 Static Vs. Dynamic
	2.6.3 Centralised Vs. Distributed
	2.6.4 Cooperative Vs. Non-cooperative
	2.6.5 Source-initiative Vs. Server-initiative

	2.7 Process Checkpointing And Migration
	2.7.1 Checkpointing Techniques
	2.7.2 Process Migration Overview
	2.7.3 Motivation For Process Migration
	2.7.4 Migration Algorithms

	2.8 Systems Which Implement Process Migration
	2.8.1 Condor : A Userspace Implementation
	2.8.2 Amoeba : A Microkernel Implementation
	2.8.3 Sprite : A Monolithic Kernel Implementation
	2.8.4 MOSIX : Extending An Existing Unix-like Kernel
	2.8.5 Xen : Virtual Machine Migration

	2.9 Grid Operating Systems
	2.9.1 Federated MOSIX Clusters
	2.9.2 The Plan 9 Approach

	2.10 Summary

	3 Design Goals
	3.1 Introduction
	3.2 Design Overview
	3.2.1 Extending GNU/Linux To Become A Grid Operating System

	3.3 Goals
	3.3.1 Transparency
	3.3.2 Improved Throughput
	3.3.3 Adaptability To Dynamic Resources
	3.3.4 Decentralisation
	3.3.5 Residual Dependencies

	3.4 Wide Area Process Migration
	3.5 Performance Metrics
	3.6 Summary

	4 Design Details And Methodology
	4.1 Introduction
	4.2 System Structure
	4.2.1 Architecture Of The Zinc-based Grid
	4.2.2 Administrative Domain Interaction
	4.2.3 The Execution Domain And Controller

	4.3 System Information
	4.3.1 Processor Load
	4.3.2 Threshold

	4.4 Managing Distributed Processes
	4.4.1 Global Process IDs
	4.4.2 Selecting Processes For Migration

	4.5 Scheduling
	4.5.1 Name Dropper : Resource Discovery
	4.5.2 Zinctask : System Selection
	4.5.3 Zincd : Job Execution And Monitoring

	4.6 Control Software
	4.7 Summary

	5 Implementation
	5.1 Introduction
	5.2 Implementation Overview
	5.3 Process Checkpointing
	5.4 The Schedulers
	5.4.1 The Kernel Scheduler
	5.4.2 The Zinc Userspace Scheduler

	5.5 Resource Discovery And Monitoring
	5.5.1 Obtaining CPU Load
	5.5.2 Obtaining Total Free Memory And Usage
	5.5.3 Preventing Overloading

	5.6 Command Line Tools
	5.7 Summary

	6 Experiments And Discussion
	6.1 Introduction
	6.2 Experimental Environment
	6.3 Wide Area Process Migration
	6.3.1 Experimental Design And Methodology
	6.3.2 Experimental Results

	6.4 Factors That Influence Job Throughput On The Grid : Experiments And Results
	6.4.1 Experimental Design And Methodology
	6.4.2 Experimental Results

	6.5 The Factors That Influence Throughput : Discussion
	6.5.1 The Effects Of Checkpointing And Preemptive Migration
	6.5.2 The Effects Of The Zinctask Algorithm
	6.5.3 The Effects Of Process Length
	6.5.4 The Effects Of Host Administrative Domain Size And Power
	6.5.5 Weaknesses Of The Experimental Model

	6.6 Summary

	7 Conclusions And Future Work
	7.1 Introduction
	7.2 Objectives Revisited
	7.2.1 Integrating Process Checkpointing And Grid Process Scheduling Into The Linux Kernel
	7.2.2 Creating A Prototype Grid Process Management System
	7.2.3 Enabling Wide-Area Process Migration
	7.2.4 Investigating The Factors Influencing Throughput In The Grid OS

	7.3 Evaluation Of Design Goals
	7.3.1 Transparency And Residual Dependencies
	7.3.2 Throughput
	7.3.3 Decentralisation
	7.3.4 Adaptability To Resource Pool

	7.4 Contributions Revisited
	7.5 Future Work
	7.5.1 Grid Process Management
	7.5.2 Grid Filesystems
	7.5.3 Security

	7.6 Summary

	Back Matter
	References
	List of Publications

	Appendices
	A Univariate ANOVA Of Results

